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Real time monitoring of tool conditions and machining processes has been extensively studied in the last 
decades, but a wide gap is still present between research activities and commercial tools. One of the factors 
which currently limit the utilization of these systems is the low flexibility of off-the-shelf solutions: in most 
cases they need dedicated off-line training sessions to acquire the reference patterns and thresholds, and/or the 
need for several input data to be defined a priori by a human operator. Instead of exploiting off-line learning 
sessions and a priori defined thresholds, this paper proposes an approach for automatic modelling of a cutting 
process and real-time monitoring of its stability that is based only on data acquired on-line during the process 
itself. This approach avoids any a-priori assumption about expected signal patterns, and it is characterized by an 
innovative implementation of well known Statistical Process Control techniques. In particular, with regard to 
milling processes, the paper proposes the utilization of cross-correlation coefficient between repeating signal 
profiles as the feature to be monitored, and an EWMA (Exponentially Weighted Moving Average) control chart 
for auto-correlated data as monitoring tool. 

1. INTRODUCTION 

The capability of performing a reliable real-time automated supervision of machining 
processes is a key issue for the development of efficient production systems. A machine tool 
supervisor should be able to acquire a sufficient set of information about the behaviour  
of the machine and about the evolution of the cutting process, and then to analyse them in 
order to activate the necessary recovery actions, including both immediate intervention and 
planning/scheduling of maintenance operations. 

Real-time data acquisition, processing and analysis – aimed at assessing if the system 
is working properly or not – constitute the three steps to be performed by on-line monitoring 
tools. The potential of these tools is very high but their actual exploitation in industry is still 
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limited with respect to the vast literature dedicated to the problem. Different issues currently 
limit their industrial implementation, e.g. costs, complexity, problems related to sensor 
integration, possible risks due to false alarms, etc... One of the most limiting factors, 
however, is the low flexibility of standard off-the-shelf solutions: in most cases they need 
dedicated off-line training sessions to acquire the reference patterns and thresholds, and the 
final performances are very often influenced by a great number of input data to be defined  
a priori by a human operator. A key point for increasing the flexibility of these systems is 
the capability of reducing the required amount of prior knowledge about the process to be 
monitored, being equal the final monitoring reliability. The monitoring system here 
proposed exploits the capability of learning a reference model directly on-line – by 
exploiting a small portion of acquired data –: this allows exploiting only information 
coming from on-going process, avoiding the need for off-line training data sets, and 
reducing the need for prior knowledge. The proposed solution concerns the application  
of Statistical Process Control (SPC) methods to on-line process and machine monitoring, 
with particular regard to Tool Condition Monitoring (TCM) problem in presence of cycle-
based signals, i.e. signals characterized by the repetition in time of a specific pattern  
( “profiles”).  

A very interesting and promising approach in this direction is represented by profile 
monitoring techniques. Profile monitoring refers to a suite of quality control methods and 
techniques aimed at judging a process by analysing the stability with time of profile data, 
i.e. by analysing the stability of a functional relationship between a response variable and 
one or more explanatory variables [13]. Williams et al. [12] present a solution for non linear 
profiles monitoring with multivariate T2 control charts; Gardner et al. [4] propose  
a monitoring and diagnostic system for semiconductor layer deposition based on spline 
spatial modelling; Colosimo et al. [2][3] propose and compare the utilization of different 
multivariate analysis approaches for quality monitoring of roundness profiles of items 
obtained by turning;  Zhou et al. [14] propose the utilization of multivariate control charts 
for cycle-based tonnage monitoring; eventually, Jeong et al. [6] apply wavelet-based SPC 
procedures to detect shifts in central azimuth curve of antenna signals. 

The application of profile monitoring methods to real-time TCM problem for 
automated machine tool supervision however is still a relatively unexplored path.  
A fundamental issue is represented by the complexity of profile modelling, both in terms  
of modelling technique selection and model fitting to original data. Modelling errors and 
model reliability in fact may strongly affect final monitoring performances. Furthermore 
auto-correlated nature of sensor signal during machining processes makes application  
of multivariate statistical analysis a particularly challenging task.  

A different solution, most commonly used in TCM applications, is represented by time 
series monitoring approaches, including index-based ones. A popular approach for time 
series monitoring involves autoregressive (AR) and autoregressive moving average 
(ARMA) modelling [8][11], even if the model identification issues often affect the 
flexibility and reliability of the approach, limiting its practical applicability. Particular 
attention has been paid in recent years also to the utilization of Artificial Neural Networks 
(ANN) for tool wear monitoring and fault diagnosis: within this research field an important 
role is played by signal feature extraction methods by means of statistical techniques and 
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time series modelling [7][5]. Extracted features constitute the necessary input information to 
be acquired by ANNs in order to infer about the monitored system condition.  

The TCM approach here proposed belongs to index-based methods category, but it 
effectively exploits profile monitoring basic idea of correlating the stability of the process 
and the condition of the system to the evolution of a reference profile shape in time. This is 
achieved by monitoring the between profiles cross-correlation coefficient in cycle-based 
signals by means of an EWMA control chart for auto-correlated data. 

Section 2 describes the general approach for monitoring cycle-based signal in milling; 
in Section 3 the utilization of control charts for auto-correlated data is discussed and the 
TCM strategy is presented; Section 4 proposes real case studies to demonstrate the 
monitoring capabilities for cutting force signals, and a comparison of different index based 
solutions is discussed; Section 5 eventually concludes the paper.   

2. ON-LINE PROFILE STABILITY MONITORING IN MILLING 

Un-continuous cutting is characterized by cycle-based signals – e.g. cutting forces and 
electrical consumptions – and both the condition of the tool and the final quality of the 
worked piece are strictly correlated with the stability of those signals, i.e. with the stability 
of repeating profiles in time. A profile in this frame corresponds to a complete spindle 
revolution within the steady state portion of the cutting process.  

Being  a cycle-based signal having cycle period equal to spindle revolution period 
T, and being a given portion of process of duration , where N is the number  
of complete revolutions considered and is the data sampling period, it is possible to 
express the signal as a temporal sequence of N profiles , being  and 

, where  is the integer part or  ratio. 
An example of cycle-based signal in un-continuous cutting is shown in Fig. 1: it is  

a portion of cutting force signal acquired during an end milling working process on  
a titanium piece using a four teeth helical end mill. It is one of real case studies discussed in 
Section 4. 

Monitoring the stability of profiles thus implies the need for dividing the original 
signal into a sequence of profiles of fixed length . If the signal is acquired within steady 
state condition phase with all cutting parameters kept fixed, any deviation from a reference 
pattern is due either to natural variability of the process (random causes) or to an assignable 
cause: e.g. a tool breakage is expected to cause a rapid shift and a permanent modification 
of the pattern, while tool wear evolution may impose a trend of profile mean value. 

A very sensitive parameter to pattern changes in profile data is the cross-correlation 
coefficient: given two profiles  and , , with standard deviation  

and  and mean value  and  respectively, cross-correlation coefficient  is:  

 
                                 (1) 
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Here it is assumed that steady state portion of cutting process can be automatically 
detected and isolated from initial and final transitory. A number of approaches for 
performing this task can be used, but they go beyond the goal of the present paper, and 
therefore attention is here focused only on steady state phase.  

 

Fig. 1. Cutting force signal in end milling 

The proposed approach (see Fig. 2) for index based monitoring consists in dividing the 
signal into a phase I data set, which is composed by the first M observed profiles (in case 
studies here discussed a number  is used), and a phase II data set, which includes 
all the following profiles. Phase I profiles are used to generate the reference profile to 
be used for computation of cross-correlation coefficient for each phase II profile , and 

hence a time series  is then obtained.  

 

 

Fig. 2. Application of proposed approach to on-line acquired signal 

The reference profile coincides with phase I mean vector, as it is expected to be the 
best model for phase I reference pattern. Once all the  phase I profiles are observed and 
reference pattern  is computed, it is possible to verify if phase I was actually in 
control: phase I verification is used either to confirm the validity of pattern or to 
detect any anomaly due to specific factor occurred within first  spindle revolutions.  



Real-Time Tool Condition Monitoring in Milling by Means of Control Charts for Auto-Correlated Data 
 

9 

2.1. PROFILE ALIGNMENT FOR PHASE DELAY ERROR MINIMIZATION 

Particular attention has to be paid to profile registration (or alignment) operation, 
whose goal is to minimize phase delay errors between profiles. Typically the revolution 
period T may not be an integer multiple of sampling period Ts; moreover, spindle speed 
during cutting process is not exactly constant, and hence the subdivision of original signal 
into a number of fixed length profiles may generate phase errors. If a trigger signal from an 
encoder mounted on spindle axis is used to set a bit whenever a 360° revolution is 
concluded, then fixed length profile  can be extracted by collecting the K data points 

that follows the jth trigger impulse; otherwise, starting from the first acquired data point, the 
profile sequence is simply generated by dividing the original signal in N consecutive data 
sets of size K. Both the two approaches may lead to profile phasing errors, which then could 
cause undesired behaviours in cross-correlation coefficient time series. Here it is assumed 
that one of these methods is used to define a first guess subdivision, than an optimization 
algorithm is exploited to perform final subdivision into optimally phased profiles. 

For a proper monitoring of   time series it is required that each profile is optimally 

aligned with the reference one. If the cross-correlation coefficient is defined as a function  
of the relative shift  between couples of profiles.  

 

                                             (2) 

 
then  is the phase delay correction which maximizes the 

cross-correlation coefficient with respect to reference profile. A shift  can be 
imposed by translating the jth profile extraction time window with respect to a given data 
point; this operation results in a collection of  alternative patterns for profile , 

each one of them corresponding to a correction , . Phase delay optimization 
consists in identifying and imposing a phase delay correction equal to . 

To avoid wrong alignments  should be defined as a small percentage of ratio 
, where  is the number of tool teeth (in real case studies discussed in the next 

Sessions a value  is sufficient to align profiles with ratio ). 
Once reference profile  is computed, it is used also as reference pattern for 

aligning each phase II profiles by computing and applying the phase delay correction .  

As far as phase I profiles are concerned, instead, anyone of them could be used in 
principle as reference for alignment of remaining  ones, and therefore two alternative 
solutions are possible: the most simple approach consists in randomly selecting one of them 
to be used as reference profile for phase I, while another solution consists in exploiting an 
algorithm which selects the reference profile by maximizing a given objective function. 

Phase I alignment optimization can be performed as follows: the jth profile with  
is used as reference pattern for applying the phase error minimization procedure to 
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remaining  profiles; once optimally aligned  patterns are identified, an  
correlation matrix  is computed, being  and ; the 

procedure is repeated selecting at each iteration a different profile as reference, and 
eventually  matrices  are computed. 

Among the obtained  configurations, the optimal one – say  – is selected as the one 
which satisfies the following criterion: 

 
                                                                                 (3) 

 
Where  are the eigenvalues of the correlation matrix  

characterizing the jth configuration. The best configuration is the one which maximizes the 
sum of squared eigenvalues: if there is no cross-correlation among the profiles,  is an 

identity matrix and the sum of squared eigenvalues is equal to  (being 
), while in ideal case of maximum correlation among all the 

profiles  is an “all-one” matrix, and hence the sum of squared eigenvalues is equal to . 

This means that the sum of squared eigenvalues ranges between  and , and the 
configuration that maximizes such a sum is the preferred one. 

3. EWMA CONTROL CHART FOR AUTO-CORRELATED DATA 

Being  a time series of values acquired during an evolving cutting process, it is 

expected to be an auto-correlated data series. Auto-correlation is due to the interaction 
between tool and piece, and it is deeply influenced by the evolution of tool wear, the 
increase of machine temperature in time, and machine vibrations. 

A profitable instrument which can be used for monitoring such a time series is 
represented by the class of control charts for auto-correlated data. Different control charting 
approaches have been developed to deal with auto-correlated data in the frame of SPC and 
they can be grouped in two categories: methods based on application of traditional control 
charts to residuals generated by means of appropriate time series modelling, and methods 
based on application of properly adapted control charts to original data. 

An approach belonging to the latter category is here proposed: it consists in utilization 
of an EWMA control chart adapted to deal with auto-correlated data, as suggested by 
Montgomery et al. [10]. The centre line of the control chart is the EWMA one step ahead 
predictor , where λ is the weighting parameter, while the Upper 

Control Limit (UCL) and the Lower Control Limit (LCL) are respectively 
 and . The standard deviation of predictor errors  

can be defined in different ways; the approach here adopted [9] is based on computation of 
the Mean Absolute Deviation (MAD)  by applying an EWMA to the absolute value of the 

prediction error  as follows: 
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                                    , with                               (4) 

 
Where α is the type I error. The standard deviation of the prediction errors is then 

defined as  , since this is the relation between the MAD of a normal distribution 

and the standard deviation. It can be demonstrated that EWMA forecast is the one which 
minimizes the Mean Square Error (MSE) for an IMA(1,1) process, but the approach results 
sufficiently robust also for monitoring processes of different nature, as pointed out by 
Montgomery [9], especially in presence of positive correlation and slow drift in process 
mean, that is the typical situation in  time series. 

Parameter λ can be estimated as the value which minimizes the sum of squared 
forecast residuals  in phase I, where λ ranges between 0 and 1. 

This approach has different advantages with respect to other control charting methods 
for auto-correlated data, in particular model-based ones. Any approach based on monitoring 
the uncorrelated residuals of a model (e.g. AR or ARMA models) is affected by the problem 
of robust model identification and estimation, and modelling errors may cause unexpected 
control chart results and high risk of false alarms. A further advantage of EWMA approach 
consists in the direct applicability to the monitored time series, and hence chart visual 
inspection provides immediate information about process evolution. 

4. CUTTING FORCES MONITORING – A REAL CASE STUDY 

The case studies here reported consist in three sets of data acquired during three end 
milling working processes on titanium piece using a four teeth ATI Stellram helical end 
mill. The same type of piece was worked by using different cutting parameters for each 
process, and the signal used for on-line monitoring is the resultant of 3 cutting force 
components acquired by means of a Kistler 9255B dynamometer. Tab. 1 summarizes the 
parameters associated to each data set. Spindle speed is always 253rpm. 

Table 1. Cutting parameters and number of considered profiles for case study processes 

Process ID Cutting parameters    
A , ,  576 20 556 

B , ,  385 20 365 

C , ,  112 20 92 
Legend: = feed rate; = radial depth of cut; = axial depth of cut. 

Process A is an example of stable process, with no anomalous behaviour or 
unexpected events, and with a very low drift due to tool wear; process B is stable and with a 
low drift, too, but some spikes are present due to local defects in worked piece; process C is 
eventually an example of unstable process due to breakage of inserts (a first breakage  
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is observed in correspondence of  profile , and a further breakage of a different insert 
is observed in correspondence of profile ). For all the considered processes, phase I 
consists in the first 20 profiles. The reference cutting force profiles ,  and  
together with the resulting ,  and  time series are shown in Fig. 3.  

 
 Reference profile   time series 
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Fig. 3. Reference profiles and  time series for 3 real case studies 

The visualization of   time series provides immediate evidence about the evolution  

of the process. In time series A the reference profile pattern is repeated almost equal to itself 
for the entire process; in time series B there are some profiles whose pattern shows 
considerable modifications with respect to ; in particular, profiles ,  

and  correspond to high amplitude deviations, but some smaller ones are present, 

too. In time series C, eventually, first insert breakage –  at  – causes a permanent 

shift of the series, and the second breakage –  – further imposes a strong shift 

which almost deletes any correlation between final profiles and the reference one. In all  

time series the drift can be associated mainly to insert wear. Thus  is a very informative 

index, as it is highly sensitive to any pattern modification, with the further advantage  
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of being a non-dimensional feature. EWMA control charts are generated by using the first 
20 profiles in phase I, with a type I error . Phase II charts are reported in Fig. 4.  
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Fig. 4. EWMA Control Charts of resulting ,  and  time series; out-of-controls indicated by circles 

 In EWMA control chart on  two out-of-controls are observed: as there is no 

assignable cause for them, the false alarm rate for this process is 0.35%. In EWMA control 
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chart on  there are globally 9 out-of-controls: 6 of them correspond to the three largest 

shifts and to the first profile that follows each one of them, (such a couple of consecutive 
out-of-controls typically characterizes any large shift which involves only one profile), 
while remaining 3 out-of-controls correspond to smaller shifts. Assignable causes (material 
defects on worked piece) can be associated to all of them, and hence false alarm rate is 0% 
in this case, but at least other 5 small shifts caused by material defects are not detected as 
out-of-control: this is due to the fact that, after a large shift is observed, the control envelope 
enlarges to take into account the short term increased process variability, and hence if  
a small shift follows a large one, it may be not detected. Eventually in EWMA control chart 
on  there are 3 out-of-controls, one corresponding to the first insert breakage, and the 

other two corresponding to the second breakage which drastically modifies the pattern. 
False alarm rate is 0% also in this case. It is interesting to note that, while  and the stable 

part of  are well fitted by an IMA(1,1) model,  has a very different nature: if Akaike 

Information Criterion [1] is used for model identification and minimum variance criterion is 
used for selection of differencing degree, the resulting model is an ARIMA(9,6,8).  

4.1. COMPARISON AGAINST DIFFERENT INDEX BASED MONITORING APPROACHES 

An analysis on simulation data has been performed to evaluate the performances  
of proposed approach under different types of pattern modification, and to compare the 
cross-correlation coefficient to other features which could be used as monitored index.  

Popular features used in index-based monitoring applications are mean values, 
standard deviation, variance and other probability distribution moments. Here profile mean 
value  and profile standard deviation  are compared to index  when the proposed 

approach based on EWMA control charts for auto-correlated data is applied. 
In order to simulate different out-of-control scenarios, a cutting force signal model has 

been used instead of real data; such a model allows flexible generation of a wide set  
of different test-bed signals. Let , with i=1,2,..., , be a cutting force signal which can be 
represented by a sequence of optimally aligned  profiles  of fixed length . In real 

cutting force data here analysed it is possible to observe that once such a time series is 
detrended by means of a linear regression model and the periodic component is deleted by 
applying the differencing operator  such that , the resulting time series 

 can be modelled by an AR() model. This observation is used to generate a cutting 
force model capable of simulating a real signal, and it allows writing the model as follows: 

 
                                                                                                                    (5) 

 
Where  is the term used to take into account the signal drift (β is the angular 

coefficient of linear regression model), while  is an 
autocorrelated sequence of profiles. Degree  is different for each real process, and it may 
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be influenced by several factors, including cutting parameters, tool wear evolution, etc... [8]. 
Here an AR(2) structure is assumed, and hence the  time series is such that: 

 
                                                                                                           (6) 

 
where ℬ is the backshift operator (  and ), 

,  and  are the AR(2) coefficients, and  is a 

white noise. In order to generate the model here it is assumed that , where 

 is the first profile of real case data C discussed above. This model is used to 

simulate a set of possible cutting force signals; in particular sequences of  profiles 
of fixed length , are considered, where first 20 profiles are used as phase I data. 
The parameters which allow fitting real data in process C are: , .  
A random combination of model parameters is used for each different repetition of  
simulated phase II data by varying  and  between 0.001 and 0.1, and using , 
and . 

Then two types of pattern deviations  and  are considered to simulate out-of-
control conditions (Fig. 5):  is a single rectangular pulse of amplitude  and duration , 
while  is a sine wave of amplitude , duration  and frequency . The former is 
analogous to most of out-of-controls observed in real case study B and to permanent shifts 
in case C, while the latter is similar to some small deviations occurred in case B and it may 
be representative of a pattern modification due to anomalous vibrations. It can be observed 
that monitoring results are not sensitive to sine wave frequency, and hence also for 
deviation  only  and  are used as disturbance degree of freedom, while . 
At each simulation step, a different time series is obtained by applying a deviation  or  
with a different parameter combination. Pattern deviation is always applied to profile 

. For both  and , amplitude and duration are defined respectively as multiples  

of profile mean and profile length: , where , and , where 
. In order to simplify results classification,  and  values are grouped into 

three categories – small, medium, large – as shown in Tab. 2. 

 

Fig. 5. Nature of deviations   and  imposed to profile   
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Globally 900 time series have been obtained (50 for each one of the 9 possible 
combinations of deviation parameter levels, resulting in 450 time series for deviation  and 

450 for ). For each repetition indexes ,  and  are computed, and EWMA control 

chart approach described above is applied.  

Table 2. Subdivision of value of  and  parameters into qualitative classes 

Class – Min / Max Values 
Parameter 

small medium large 
A 0.01  0.07  0.08  0.14  0.15  0.20  

L 0.01  0.10  0.11  0.21  0.21  0.3  

Simulations results are reported in Tab. 3: the performances offered by different 
indexes are compared in terms of false alarm rate and deviation detection rate (i.e. average 
percentage of actual out-of-control profiles detected). For each combination of  and , the 
three values reported in Table 3 are the deviation detection rates obtained by using 
respectively index ,  and  (the latter in bold characters). The table shows that  

coefficient guarantees correct out-of-control detection in presence of deviations which 
actually modify the pattern but have no effect on profile mean value (e.g.  deviations), 
and also in presence of deviations which causes small modification of mean value and 
standard deviation. As far as large amplitude and/or long duration pattern deviations are 
concerned, instead, the three indexes provide analogous performances. Parallel monitoring 
of indexes  and  may provide additional information about occurred anomalies (e.g. 

zero-mean deviations cause out-of-controls in  control chart but not in  one).  

Table 3. Comparison analysis results; each field contains respectively percentage associated to indexes , ,   

 Deviation 
detection rate (%) small medium large 

small 76.8; 99.8; 100 100; 61.6; 100 100; 98.8; 100 
medium 100; 100; 100 100; 100; 100 100; 100; 100   

large 100; 100; 100 100; 100; 100 100; 100; 100 
      

small 0; 46.0; 97.8 0; 78.2; 100 0; 79.6; 100 
medium 1.6; 93.0; 100 0; 100; 100 0; 100; 100   

large 12.4; 99.2; 100 0; 100; 100 0; 100; 100  

Index 
False 

alarm rate 

 0.0511% 

 0.4831% 

 0.1876%  

5. CONCLUSION 

The proposed on-line monitoring approach avoids the need for prior knowledge about 
the nature of the monitored signals, and for any off-line training session. It profitably 
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combines the basic profile monitoring  philosophy with EWMA control charts for auto-
correlated data. The between profile cross-correlation coefficient  is the most sensitive 

feature to pattern deviations, it does not depend on the nature of shape modification, and it 
is an adimensional index. Real case studies consisting in cutting force signals in end milling 
processes showed the actual applicability of EWMA approach to different types  
of processes and out-of-controls conditions. The visualization of EWMA charts on  time 

series provides immediate evidence about the evolution of the process, and hence it could be 
useful both in case of control chart visual inspection, and in case of automated condition 
assessment (in the latter case it should be coupled with dedicated logics for automated 
interpretation of out-of-controls and centre line trends, e.g. for tool breakage detection, wear 
estimation, etc...). Simulations performed on autoregressive cutting force models eventually 
showed the high performances of the EWMA approach in terms of robustness with respect 
to false alarm risk, and the high reliability of cross-correlation coefficient in comparison 
with other statistical indexes in terms of actual deviation detection rate.  
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