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REAL-TIME TOOL CONDITION MONITORING IN MILLING BY MEANS
OF CONTROL CHARTSFOR AUTO-CORRELATED DATA

Real time monitoring of tool conditions and mach@iprocesses has been extensively studied in gte la
decades, but a wide gap is still present betweseareh activities and commercial tools. One of fdetors
which currently limit the utilization of these sgsats is the low flexibility of off-the-shelf solutig: in most
cases they need dedicated off-line training sessioracquire the reference patterns and threshafdgpr the
need for several input data to be defined a pbgra human operator. Instead of exploiting off-liearning
sessions and a priori defined thresholds, this ppp@poses an approach for automatic modelling ofitiing
process and real-time monitoring of its stabilitattis based only on data acquired on-line durireggrocess
itself. This approach avoids any a-priori assumptibout expected signal patterns, and it is chariaed by an
innovative implementation of well known Statistiddtocess Control techniques. In particular, withare to
milling processes, the paper proposes the utitinatf cross-correlation coefficient between repeasignal
profiles as the feature to be monitored, and an EA(Exponentially Weighted Moving Average) contrdlact
for auto-correlated data as monitoring tool.

1. INTRODUCTION

The capability of performing a reliable real-timgt@mated supervision of machining
processes is a key issue for the development wiezit production systems. A machine tool
supervisor should be able to acquire a sufficietta information about the behaviour
of the machine and about the evolution of the rgtprocess, and then to analyse them in
order to activate the necessary recovery actioneg)ding both immediate intervention and
planning/scheduling of maintenance operations.

Real-time data acquisition, processing and anatysisned at assessing if the system
is working properly or not — constitute the thrésps to be performed by on-line monitoring
tools. The potential of these tools is very high their actual exploitation in industry is still
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limited with respect to the vast literature dedéchto the problem. Different issues currently
limit their industrial implementation, e.g. costsymplexity, problems related to sensor
integration, possible risks due to false alarms,..eOne of the most limiting factors,
however, is the low flexibility of standard off-tshelf solutions: in most cases they need
dedicated off-line training sessions to acquirertference patterns and thresholds, and the
final performances are very often influenced byeagynumber of input data to be defined
a priori by a human operator. A key point for irasmg the flexibility of these systems is
the capability of reducing the required amount wdpknowledge about the process to be
monitored, being equal the final monitoring rellapi The monitoring system here
proposed exploits the capability of learning a mefiee model directly on-line — by
exploiting a small portion of acquired data —: tlalows exploiting only information
coming from on-going process, avoiding the need dtirline training data sets, and
reducing the need for prior knowledge. The proposeldition concerns the application
of Statistical Process Control (SPC) methods tdir@process and machine monitoring,
with particular regard to Tool Condition MonitorirfCM) problem in presence of cycle-
based signals, i.e. signals characterized by tpetiten in time of a specific pattern
( “profiles”).

A very interesting and promising approach in thigation is represented by profile
monitoring techniques. Profile monitoring refersaisuite of quality control methods and
techniques aimed at judging a process by analyiagstability with time of profile data,
l.e. by analysing the stability of a functionalatbnship between a response variable and
one or more explanatory variables [13]. Williamsk{12] present a solution for non linear
profiles monitoring with multivariateT?> control charts; Gardner et al. [4] propose
a monitoring and diagnostic system for semicondutdager deposition based on spline
spatial modelling; Colosimo et al. [2][3] proposedacompare the utilization of different
multivariate analysis approaches for quality mamitg of roundness profiles of items
obtained by turning; Zhou et al. [14] propose tiigézation of multivariate control charts
for cycle-based tonnage monitoring; eventually,ngeet al. [6] apply wavelet-based SPC
procedures to detect shifts in central azimuth ewfvantenna signals.

The application of profile monitoring methods toalkime TCM problem for
automated machine tool supervision however is dillrelatively unexplored path.
A fundamental issue is represented by the compli@fitprofile modelling, both in terms
of modelling technique selection and model fittimgoriginal data. Modelling errors and
model reliability in fact may strongly affect finahonitoring performances. Furthermore
auto-correlated nature of sensor signal during maulp processes makes application
of multivariate statistical analysis a particulaclyallenging task.

A different solution, most commonly used in TCM Agpgtions, is represented by time
series monitoring approaches, including index-basees. A popular approach for time
series monitoring involves autoregressive (AR) amgtoregressive moving average
(ARMA) modelling [8][11], even if the model idenitftion issues often affect the
flexibility and reliability of the approach, limng its practical applicability. Particular
attention has been paid in recent years also tatiheation of Artificial Neural Networks
(ANN) for tool wear monitoring and fault diagnosgithin this research field an important
role is played by signal feature extraction methbgsneans of statistical techniques and
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time series modelling [7][5]. Extracted featuressiitute the necessary input information to
be acquired by ANNSs in order to infer about the nayed system condition.

The TCM approach here proposed belongs to indegebasethods category, but it
effectively exploits profile monitoring basic ided correlating the stability of the process
and the condition of the system to the evolutiom oéference profile shape in time. This is
achieved by monitoring thbetween profiles cross-correlation coefficient in cycle-based
signals by means of an EWMA control chart for actorelated data.

Section 2 describes the general approach for mumit@ycle-based signal in milling;
in Section 3 the utilization of control charts fauto-correlated data is discussed and the
TCM strategy is presented; Section 4 proposes caak studies to demonstrate the
monitoring capabilities for cutting force signads)d a comparison of different index based
solutions is discussed; Section 5 eventually cateduhe paper.

2. ON-LINE PROFILE STABILITY MONITORING IN MILLING

Un-continuous cutting is characterized by cyclegoasignals — e.g. cutting forces and
electrical consumptions — and both the conditiorth&f tool and the final quality of the
worked piece are strictly correlated with the digbof those signals, i.e. with the stability
of repeating profiles in time. A profile in thisaime corresponds to a complete spindle
revolution within the steady state portion of theting process.

Being¥(t) a cycle-based signal having cycle period equaptndle revolution period
T, and being a given portion of process of duratioi (T/T,), whereN is the number
of complete revolutions considered amdis the data sampling period, it is possible to
express the signal as a temporal sequends pfofiles v;(k), beingj = 1,2,...,N and
k=12..., K, wherek is the integer part ar /7. ratio.

An example of cycle-based signal in un-continuouttireg is shown in Fig. 1: it is
a portion of cutting force signal acquired during and milling working process on
a titanium piece using a four teeth helical end.riiis one of real case studies discussed in
Section 4.

Monitoring the stability of profiles thus impliebd need for dividing the original
signal into a sequence of profiles of fixed lengthlf the signal is acquired within steady
state condition phase with all cutting parametexst Kixed, any deviation from a reference
pattern is due either to natural variability of fhr@cess (random causes) or to an assignable
cause: e.g. a tool breakage is expected to catmgichshift and a permanent modification
of the pattern, while tool wear evolution may impastrend of profile mean value.

A very sensitive parameter to pattern changesafilprdata is the cross-correlation
coefficient: given two profiles (k) andw(k), k = 1,2,...,K, with standard deviatioa,

andg,, and mean valug andw respectively, cross-correlation coefficient, = [0,1] is:
1

o K (ofiYy S\ fofly =
Taw = Koo voqlz(k) — 2)(w(k) —w) (1)
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Here it is assumed that steady state portion dinguprocess can be automatically
detected and isolated from initial and final trémsi. A number of approaches for

performing this task can be used, but they go beybe goal of the present paper, and
therefore attention is here focused only on stestalie phase.
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Fig. 1. Cutting force signal in end milling

The proposed approach (see Fig. 2) for index basmdtoring consists in dividing the
signal into aphase | data set, which is composed by the fivtbbserved profiles (in case
studies here discussed a numiger= 20 is used), and phase |l data set, which includes

all the following profiles. Phase | profiles areeddo generate the reference profiig k) to

be used for computation of cross-correlation cogffit for each phase Il profiig(k), and
hence a time seriegs= 7y« is then obtained.

Signal
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Fig. 2. Application of proposed approach to on-krguired signal

The reference profile coincides with phase | meactor, as it is expected to be the
best model for phase | reference pattern. Oncthalls phase | profiles are observed and

reference patteriy”(k) is computed, it is possible to verify if phase &svactually in
control: phase | verification is used either to foon the validity of patterny” (k) or to
detect any anomaly due to specific factor occuwihin first A spindle revolutions.
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2.1. PROFILE ALIGNMENT FOR PHASE DELAY ERROR MINIMIATION

Particular attention has to be paid to profile segition (or alignment) operation,
whose goal is to minimize phase delay errors betwmefiles. Typically the revolution
period T may not be an integer multiple of sampling perigd moreover, spindle speed
during cutting process is not exactly constant, edce the subdivision of original signal
into a number of fixed length profiles may genenattase errors. If a trigger signal from an
encoder mounted on spindle axis is used to sett avlbenever a 360° revolution is
concluded, then fixed length profii¢(k) can be extracted by collecting tKedata points

that follows thg™ trigger impulse; otherwise, starting from thetfasquired data point, the
profile sequence is simply generated by dividing dniginal signal inN consecutive data
sets of siz&K. Both the two approaches may lead to profile ptgasrrors, which then could
cause undesired behaviours in cross-correlatiofficeat time series. Here it is assumed
that one of these methods is used to define adussts subdivision, than an optimization
algorithm is exploited to perform final subdivisiorio optimally phased profiles.

For a proper monitoring of; time series it is required that each profile isiroplly

aligned with the reference one. If the cross-catr@h coefficient is defined as a function
of the relative shifi between couples of profiles.

el

Ty y; (h) = —— F=i(V7 (k) = V7)Y, (k + h) = F) 2)

thenh; = arg ma_‘-:hE:_H_ﬂ[r;;{:h:]] is the phase delay correction which maximizes the
cross-correlation coefficient with respect to refese profile. A shifth € [-H, H] can be
imposed by translating tH& profile extraction time window with respect to &en data
point; this operation results in a collectionz# + 1 alternative patterns for profilg (k),
each one of them corresponding to a corredtion = 0,1, ...,2H. Phase delay optimization
consists in identifying and imposing a phase detayection equal té; .

To avoid wrong alignmentg/ should be defined as a small percentage of ratio
K /N.,..n,» Wheren, ., is the number of tool teeth (in real case studissussed in the next
Sessions a valug = 20 is sufficient to align profiles with rati& /N,,,., = 600).

Once reference profilé” (k) is computed, it is used also as reference paftarn
aligning each phase Il profiles by computing angdlyipg the phase delay correctiéh

As far as phase | profiles are concerned, instaagipne of them could be used in
principle as reference for alignment of remainkig- 1 ones, and therefore two alternative

solutions are possible: the most simple approaakists in randomly selecting one of them

to be used as reference profile for phase |, wdmlether solution consists in exploiting an

algorithm which selects the reference profile byximézing a given objective function.
Phase | alignment optimization can be performefblsws: thej™ profile with j=1

iIs used as reference pattern for applying the pleser minimization procedure to
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remainingM — 1 profiles; once optimally aligneff — 1 patterns are identified, i x M
correlation matrix R; = corr(¥;,¥;) is computed, beingi = 1,2,..., M and i = j, the
procedure is repeated selecting at each iteratiaiffarent profile as reference, and
eventuallyM matricesr; are computed.

Among the obtaineds configurations, the optimal one — sgy- is selected as the one
which satisfies the following criterion:

-

ju=argmax;y oy Zizq[Ap)’ 3)

Where 4y, 455, .4y, are the eigenvalues of the correlation mate

characterizing th¢" configuration. The best configuration is the ondolttmaximizes the
sum of squared eigenvalues: if there is no croseletion among the profiless; is an

identity matrix and the sum of squared eigenvaluss equal to M (being
A1y = Aoy = - = Ay = 1), while in ideal case of maximum correlation amatigthe
profilesR; is an “all-one” matrix, and hence the sum of sqdaigenvalues is equal MY

This means that the sum of squared eigenvaluesesabgtweeny and M-, and the
configuration that maximizes such a sum is thegoretl one.

3. EWMA CONTROL CHART FOR AUTO-CORRELATED DATA

Being », a time series of values acquired during an evghdotting process, it is

expected to be an auto-correlated data series.-&artelation is due to the interaction
between tool and piece, and it is deeply influenbgdthe evolution of tool wear, the
increase of machine temperature in time, and machbrations.

A profitable instrument which can be used for maomitg such a time series is
represented by the class of control charts for-aatcelated data. Different control charting
approaches have been developed to deal with autelai®d data in the frame of SPC and
they can be grouped in two categories: methodsdbaseapplication of traditional control
charts to residuals generated by means of apptepirae series modelling, and methods
based on application of properly adapted contrattshto original data.

An approach belonging to the latter category i®h@pposed: it consists in utilization
of an EWMA control chart adapted to deal with actorelated data, as suggested by
Montgomery et al. [10]. The centre line of the ecohthart is the EWMA one step ahead
predictor z; = ir; + (1 — 4)z;_;, Where is the weighting parameter, while the Upper

Control Limit (UCL) and the Lower Control Limit (LQ are respectively
UCL;., =z;+ 36, andLCL;., = z; — 35;. The standard deviation of predictor errais

can be defined in different ways; the approach heagpted [9] is based on computation of
the Mean Absolute Deviation (MAD}; by applying an EWMA to the absolute value of the

prediction erroe; = 7; — z;_, as follows:
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&

3}': ﬂ‘lé’j| +(1— ﬂ}ﬂj-i’ with A(0) = Zle "_-’ @

Wherea is the type | error. The standard deviation of pinediction errors is then
defined asg; = 1.25A, since this is the relation between the MAD ofoannal distribution

and the standard deviation. It can be demonstihi@dEWMA forecast is the one which
minimizes the Mean Square Error (MSE) for an IMA{lprocess, but the approach results
sufficiently robust also for monitoring processdsddferent nature, as pointed out by
Montgomery [9], especially in presence of posito@relation and slow drift in process
mean, that is the typical situationzintime series.

Parameterh can be estimated as the value which minimizessina of squared
forecast residual® L, e (1) in phase I, wherg ranges between 0 and 1.

This approach has different advantages with redpecther control charting methods
for auto-correlated data, in particular model-basees. Any approach based on monitoring
the uncorrelated residuals of a model (e.g. AR RMA models) is affected by the problem
of robust model identification and estimation, anddelling errors may cause unexpected
control chart results and high risk of false alardgurther advantage of EWMA approach
consists in the direct applicability to the mongdrtime series, and hence chart visual
inspection provides immediate information aboutcpss evolution.

4. CUTTING FORCES MONITORING — A REAL CASE STUDY

The case studies here reported consist in threeofetata acquired during three end
milling working processes on titanium piece usingoar teeth ATI Stellram helical end
mill. The same type of piece was worked by usinfedent cutting parameters for each
process, and the signal used for on-line monitoisghe resultant of 3 cutting force
components acquired by means of a Kistler 9255Bathometer. Tab. 1 summarizes the
parameters associated to each data set. Spindid spalways 253rpm.

Table 1. Cutting parameters and number of congiderefiles for case study processes

Process ID Cutting parameters N M N—M
A A, = 0lmm/z, D, = 12.0mm, D; = 8mm 576 20 556
B A; = 0.1lmm/z, D, = 40mm, D, = 8mm 385 20 365
C A, = 02mm/z D, = 40mm, D, = 8mm 112 20 92
Legend:4.= feed rate;D,= radial depth of cutfl.= axial depth of cut.

Process A is an example of stable process, withanomalous behaviour or
unexpected events, and with a very low drift dutotd wear; process B is stable and with a
low drift, too, but some spikes are present duedal defects in worked piece; process C is
eventually an example of unstable process due @aklage of inserts (a first breakage
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is observed in correspondence of profite 72, and a further breakage of a different insert
IS observed in correspondence of profite 110). For all the considered processes, phase |
consists in the first 20 profiles. The referencting force profilesy; (k), ¥z (k) and ¥/ (k)
together with the resulting, ;, 3 ; andz. ; time series are shown in Fig. 3.
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Fig. 3. Reference profiles amrdtime series for 3 real case studies

The visualization of7; time series provides immediate evidence abouetiwution

of the process. In time series A the referencellprphttern is repeated almost equal to itself
for the entire process; in time series B there swme profiles whose pattern shows
considerable modifications with respectiiidk); in particular, profilest »q(k), Yz 143(k)

andY; .- (k) correspond to high amplitude deviations, but semealler ones are present,
too. In time series C, eventually, first insertdkage — at--,(k) — causes a permanent
shift of the series, and the second breakagé tq(k) — further imposes a strong shift
which almost deletes any correlation between fprafiles and the reference one. In &ll
time series the drift can be associated mainlynsent wear. Thug is a very informative
index, as it is highly sensitive to any pattern ifiodtion, with the further advantage
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of being a non-dimensional feature. EWMA controhith are generated by using the first
20 profiles in phase |, with a type | er@r= 0.05. Phase |l charts are reported in Fig. 4.
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Fig. 4. EWMA Control Charts of resultirg ;, 7 ; and; ; time series; out-of-controls indicated by circles

In EWMA control chart onr, ; two out-of-controls are observed: as there is no
assignable cause for them, the false alarm ratthi®process is 0.35%. In EWMA control
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chart onr ; there are globally 9 out-of-controls: 6 of thentrespond to the three largest

shifts and to the first profile that follows eacheoof them, (such a couple of consecutive
out-of-controls typically characterizes any lardgftswhich involves only one profile),
while remaining 3 out-of-controls correspond to Bemeshifts. Assignable causes (material
defects on worked piece) can be associated td #lleon, and hence false alarm rate is 0%
in this case, but at least other 5 small shiftsseduby material defects are not detected as
out-of-control: this is due to the fact that, aféelarge shift is observed, the control envelope
enlarges to take into account the short term is@@gprocess variability, and hence if
a small shift follows a large one, it may be notedéed. Eventually in EWMA control chart
on 7. ; there are 3 out-of-controls, one correspondingheofirst insert breakage, and the

other two corresponding to the second breakage hwtirastically modifies the pattern.
False alarm rate is 0% also in this case. It isredting to note that, whitg ; and the stable

part of 7 ; are well fitted by an IMA(1,1) model, ; has a very different nature: if Akaike

Information Criterion [1] is used for model idemt#tion and minimum variance criterion is
used for selection of differencing degree, the ltegumodel is an ARIMA(9,6,8).

4.1. COMPARISON AGAINST DIFFERENT INDEX BASED MONDRING APPROACHES

An analysis on simulation data has been perfornce@vialuate the performances
of proposed approach under different types of patteodification, and to compare the
cross-correlation coefficient to other featuresahicould be used as monitored index.

Popular features used in index-based monitoringliGgimns are mean values,
standard deviation, variance and other probaldlisyribution moments. Here profile mean
value ¥; and profile standard deviatics} are compared to index when the proposed

approach based on EWMA control charts for autoetated data is applied.

In order to simulate different out-of-control sceosg, a cutting force signal model has
been used instead of real data; such a model alitaxghle generation of a wide set
of different test-bed signals. L&t, with i=1,2,...NK, be a cutting force signal which can be

represented by a sequence of optimally aligNeprofiles ¥, (k) of fixed lengthk. In real

cutting force data here analysed it is possibl®leerve that once such a time series is
detrended by means of a linear regression modettengeriodic component is deleted by
applying the differencing operat®® such thaw*F, = F, — F,_,, the resulting time series

i—K

Vv¥F, can be modelled by an AR( model. This observation is used to generate tingut
force model capable of simulating a real signadi allows writing the model as follows:

F, =Y, +itg(f) (5)

Whereitg(f) is the term used to take into account the signftl @6 is the angular
coefficient of linear regression model), whilg, =[v,(k),¥,(k),..., ¥, (k)] is an
autocorrelated sequence of profiles. Degrae different for each real process, and it may
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be influenced by several factors, including cutfr@agameters, tool wear evolution, etc... [8].
Here an AR(2) structure is assumed, and hencg, thee series is such that:

AB)1-B)r; = ¢, (6)

where [ is the backshift operator B, =v,_, and V=1-8),
A(B) =1- @B - ¢.,B", ¢, andg, are the AR(2) coefficients, and,~N(0;0;) is a
white noise. In order to generate the model here dssumed thék (k) = ¥, ,(k), where
Y- (k) is the first profile of real case data C discussddve. This model is used to
simulate a set of possible cutting force signalgparticular sequences &f= 100 profiles
of fixed lengthx = 2371, are considered, where first 20 profiles are weghase | data.
The parameters which allow fitting real data inqass C arep, = 0.881, @, = 0.022.

A random combination of model parameters is used gach different repetition of
simulated phase Il data by varyigg and ¢, between 0.001 and 0.1, and usigs) = 2,

andg, = 10N.

Then two types of pattern deviatiods and §;, are considered to simulate out-of-
control conditions (Fig. 5)§; is a single rectangular pulse of amplitudend durationL,
while §;; is a sine wave of amplitude, durationZ and frequencyf. The former is

analogous to most of out-of-controls observed al case study B and to permanent shifts
in case C, while the latter is similar to some $mavliations occurred in case B and it may
be representative of a pattern modification duartomalous vibrations. It can be observed
that monitoring results are not sensitive to sinavev frequency, and hence also for
deviationé;; only A andL are used as disturbance degree of freedom, vfh#e16(2r/L).

At each simulation step, a different time serieshained by applying a deviati@y or &;;

with a different parameter combination. Patterniakwn is always applied to profile
Y-o(k). For bothg, and &;;, amplitude and duration are defined respectivelymailtiples

of profile mean and profile lengtht = AY-,, whered € [0.01 0.2], andL = LK, where
L € [0.01 0.3]. In order to simplify results classificatio}#,andL values are grouped into
three categories — small, medium, large — as showab. 2.

AR

Fig. 5. Nature of deviations; andd;; imposed to profile’-, (k7
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Globally 900 time series have been obtained (50e@ch one of the 9 possible
combinations of deviation parameter levels, resglin 450 time series for deviatiah and

450 for §;;). For each repetition indexes ¥; and g; are computed, and EWMA control
chart approach described above is applied.

Table 2. Subdivision of value ¢f andL parameters into qualitative classes

Class — Min / Max Values
Parameter -
small medium large
A 0.01¥,, 0.07¥., 0.08¥., 0.14¥-, 0.15¥-, 0.20¥,
L 0.01¥ 0.10K 0.11K 0.21K 0.21% 0.3

Simulations results are reported in Tab. 3: thefgperances offered by different
indexes are compared in terms of false alarm naded&viation detection rate (i.e. average
percentage of actual out-of-control profiles degdt For each combination gfandL, the
three values reported in Table 3 are the deviatetection rates obtained by using
respectively indext;, o, andr, (the latter in bold characters). The table sholat

coefficient guarantees correct out-of-control didec in presence of deviations which
actually modify the pattern but have no effect oafile mean value (e.gj,; deviations),

and also in presence of deviations which causedl snalification of mean value and
standard deviation. As far as large amplitude ankbiog duration pattern deviations are
concerned, instead, the three indexes provide goatoperformances. Parallel monitoring
of indexesY, andr, may provide additional information about occur@bmalies (e.qg.

zero-mean deviations cause out-of-controls icontrol chart but not if¥; one).

Table 3. Comparison analysis results; each fietdains respectively percentage associated to isdéxa, r;

Deviation L

detection rate (% small medium large False
small 76.8; 99.8100 100; 61.6:100 100; 98.8:100 Index alarm rate

5, | 4 _medium 100; 100100 100; 100,100 100; 100,100 ¥ | 00511%
A N A
sma ;46.097. ; 78.2;1 ; 79.6;1

1 i 3 i 3 . 0

6 | A medium 1.6; 93.0100 0, 100;100 0; 100,100 "y | 0.1876%

large 12.4; 99.2100 0; 100;100 0; 100;100

5. CONCLUSION

The proposed on-line monitoring approach avoidsniwed for prior knowledge about
the nature of the monitored signals, and for anfyliogé training session. It profitably
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combines the basic profile monitoring philosophighnEWMA control charts for auto-
correlated data. The between profile cross-coiglatoefficients; is the most sensitive

feature to pattern deviations, it does not depanthe nature of shape modification, and it
is an adimensional index. Real case studies camgist cutting force signals in end milling
processes showed the actual applicability of EWMppraach to different types
of processes and out-of-controls conditions. Tteialization of EWMA charts of time

series provides immediate evidence about the aoalaf the process, and hence it could be
useful both in case of control chart visual insegtand in case of automated condition
assessment (in the latter case it should be coupitd dedicated logics for automated
interpretation of out-of-controls and centre linends, e.g. for tool breakage detection, wear
estimation, etc...). Simulations performed on agogssive cutting force models eventually
showed the high performances of the EWMA approacdeims of robustness with respect
to false alarm risk, and the high reliability ofoss-correlation coefficient in comparison
with other statistical indexes in terms of actuabidtion detection rate.
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