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FAILURE MODE ANALYSIS TO DEFINE PROCESS MONITORING SYSTEMS 

The high costs of using skilled operators in production processes has built a demand for reduced manning, 'lights 
out machining' manufacture.  Process monitoring systems have become a widely researched area in recent years 
since there is a need for intelligent systems to replace the manual intervention in existing processes. Furthermore, 
using modern sensors and signal processing techniques, monitoring systems can obtain more information about  
a process and therefore reduce costs further though maximised life of cutting tools, optimised cutting parameters 
and reduced scrap or re-work. With many application areas available, such as tool condition monitoring, chatter 
avoidance or feedback control of cutting parameters, it is not always apparent what the key aspects required by 
an intelligent monitoring system are. In addition, different machining processes have different demands and 
limitations for monitoring. This paper considers an analytical approach to define the requirements  
of a monitoring system. A process failure mode effect analysis (FMEA) is carried out to determine the 
weaknesses of current production processes. From this analysis, the relationships between failures, causes and 
effects can be used to populate conditional relationships between process faults and sensor signal features  
in a monitoring system. 

1. INTRODUCTION 

Most research, testing and industrial application of machining process monitoring 
systems has considered tool condition monitoring as the primary purpose for monitoring  
a process [1]. Techniques have been applied to turning, drilling, milling and grinding 
processes with varying success [2-4]. A number of other research areas have considered  
a fault detection approach where detection of chatter, depth of cut change or cutting force 
changes are the objective of the system [5]. Conditional dependencies between different 
sensor signal features and input variables to a process has been determined by carrying out 
computations on experimental data, such as neural network methods or correlation  
analysis [6]. 

One area lacking in the research is a detailed understanding of the relationship between 
input variables and the measured effects. This means that where changes are made to  
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a process, the change to sensor signals is not clearly understood. Current methods require 
further experimental data and system training in order to be effective on unproven processes.  

The majority of process monitoring applications target solely the detection of process 
failures, and not the detection of the cause of failure. With functionality to detect cause of 
failures, a monitoring system is more capable of preventing issues in the manufacturing 
process since a cause of failure must be known to effectively correct the process. In addition 
to this, identifying the effects that may occur from a failure is also beneficial, the most 
commonly used method being on-machine probing for part geometry error measurement. 

The first step in understanding the need for a monitoring system for a machining 
process is to consider what is missing from current processes. For this study, existing 
machining processes have been interrogated to determine the failures that have occurred, the 
causes of these failures, the effects from the occurrence and the detection methods currently 
in use, by conducting an FMEA [7],[8]. An example from the FMEA is given in Table 1. 

Table 1. Failure Mode Analysis Worksheet for the Process Step ‘Milling Operation’ 

 

 
 

By employing this technique, it is clearly shown that the operator is utilised for 
detection of many failures. In order to build a process where there is little or no reliance on 
the operator, each one of these failures must now be detected by a monitoring system. The 
list of potential failures, however, is vast, and so the severity each failure must be 
considered. The FMEA scoring system covers the severity of the effect, the frequency  
of occurrence of the cause and the effectiveness of the current process control. As  
a monitoring system is intended replace the existing process control method, only the 
severity and occurrence scores are used for ranking the failure mode/cause combinations. 

In this example all detection methods that require human intervention are short listed, 
from this the failures are scored by the severity*occurrence value. The highest scoring 
failure modes for a generic milling operation are listed in Table 2. 
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Table 2. Highest scoring failure mode/cause combinations 

 

For the generic milling process example, all failure modes exhibited the same potential 
effects as follows: 

• Poor surface roughness. 
• Re-deposited swarf, chatter marks and other surface effects. 
• Localised surface damage or gouges. 
• Sub surface damage / poor surface integrity.  
• Feature dimension/geometry error. 
• Tool holder damage. 
• Machine damage. 
• Delay to manufacture. 

2. CAUSE AND EFFECT RELATIONSHIPS 

It is vital for a process monitoring system to have consideration of the cause and effect 
relationships of process faults for intelligent detection and fault diagnosis to be achieved. 
Experimental data is important to understand these relationships in detail. Using the FMEA 
described, the failures, causes and effects are listed, however this method does not 
interrogate the cause and effect relationships. From the FMEA, the key failures can be 
targeted and an experimental plan can be defined to understand these relationships. The 
method of interrogating the FMEA data and applying it to a monitoring system is described 
later in this report. 

A common failure shown in the FMEA is premature worn tool condition. A root cause 
of this failure may be material property change and an effect of this failure may be poor 
surface finish. Several other interactions occur during this process that result from the root-
cause and these have been termed meta-causes, for example increased cutting force. This 
example is illustrated in Fig. 1. 



Failure Mode Analysis to Define Process Monitoring Systems 121 

 

 
  

Fig. 1. Example of a cause and effect relationship 

With understanding of the cutting process, a number of meta-causes can be proposed 
for each failure mode. Experimental data can then be used to determine the detect-ability of 
these interactions. The above example can be expanded to that shown in Fig. 2. 

 

 

Fig. 2. Multiple meta-causes and effects from a single root cause 

3. IN PROCESS MEASUREMENT OF META CAUSES AND EFFECTS 

The meta-causes can also be perceived as effects of the root cause and generally 
speaking they occur during the machining process. For measurement of their occurrence, 
real time indirect measurement is most achievable in a production process. For example, 
vibration, acoustic emission (AE) [9] and spindle power measurement. 
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In this application, the effects from each failure mode are in fact work piece or process 
defects and so for the following descriptions they will now be referred to as defects. Where 
measurement capability exists, the defects can be measured intermittently by direct 
measurement with inspection probes, roughness tester’s etc. Measurement of both meta-
causes and defects should be considered for the most comprehensive monitoring system. 

Finally, from the FMEA data, the interactions between all meta-causes, root causes and 
defects should be defined. For these relationships to be modelled, a network of interactions 
is required rather than the flow diagram example in Fig. 2., Fig. 3. shows the form that these 
relationships take in a directed acyclic graph (DAG). 

 

Fig. 3. Example DAG associating meta-causes, root causes and defects 

A monitoring system would use the relationships defined in Fig. 3. in two ways: 
 
(i) The meta-causes would be measured and a root cause would be diagnosed. The 
defect(s) would then be anticipated and either measured in process (where a method to do so 
exists) or the user would be informed of the potential defect.  
(ii) The system would be retrospectively informed of the defect, either from measurement 
equipment or an operator input. The system would then infer the most likely root cause  
of this error from the previous meta-cause measurement data. 

One advantage from using the above functions is that the system can be self learning 
and improve its diagnosis performance based on previous results. 

4. EXPERIMENT AND RESULTS 

Using the techniques described, a process monitoring system has been defined and 
tested. The process of designing the system is shown in this section, followed by the results 
given from machining trials. 
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First, an FMEA has been conducted choosing a profile milling operation on Titanium 

6-4 as the process step in question. The FMEA scoring was completed by a number of 
manufacturing engineers with a wide experience in aerospace manufacturing. 19 different 
failure modes were identified for the milling process and for these, a total of 23 causes were 
recorded.  

For this example, the three most frequent and highest scoring causes are targeted by the 
monitoring system and these were found to be: 
• Material geometry variation. 
• Material properties, such as hardness. 
• Tool condition or tool life. 

All of which are key process inputs to all machining processes. Furthermore, these had 
little or no detection methods other than the reliance on skilled operators. These causes were 
responsible for a number of failure modes as follows: 
• Part vibration. 
• Tool vibration. 
• Fixture failure. 
• Collision. 
• Tool pull-out. 
• Tool breakage. 
• Tool wear. 

The meta-causes or measurable effects associated with each of the causes and failures 
were identified as follows: 
• Vibration. 
• Cutting force. 
• AE. 
• Temperature. 
• Spindle power. 

The measureable effects from occurrence of the process failures were identified as: 
• Part geometry. 
• Tool geometry. 
• Part surface roughness. 

 
Fig. 4. Cause, meta-cause and effect DAG for profile milling of Titanium 
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This data can now be used to define the associations between causes, meta-causes and 
effects from the process failures. The network diagram in Fig. 4. illustrates this. Similar 
strategies, such as Bayesian networks, have proven to be an effective way of analysing  
a network of relationships between elements of a machining system [10],[11]. 

For the experimental demonstration of this methodology, the DAG shown in Fig. 5. 
has been simplified to that shown in Fig. 5. 

 

Fig. 5. Cause, meta-cause and effect DAG for experiment 

An experiment has been conducted in order to determine the conditional dependencies 
between each node in Fig. 5. In addition to this, scaling factors have been determined for the 
sensor signals of spindle power and AE. 

Using a 16mm diameter, 4 flute solid carbide end mill, profile milling operations were 
conducted on a 730mm long titanium 6-4 test piece. Spindle power and AE RMS 
measurements were taken for each cut. Tool wear measurements were taken routinely during 
the trials until tools reached a flank wear of 0.2mm, at which point the tool is deemed 
completely worn. Radial depth of cut was incremented from 0.5mm to 3mm in 0.5mm steps. 
Axial depth of cut was kept constant at 10mm. The experimental set up is shown in Fig. 6. 

 

Fig. 6. Experimental set up for profile milling trials 
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In addition to categorising the tool wear state by the level of flank wear; this is also 

done by calculating the % of tool life consumed as a function of metal removed. Using this 
method can be more practical in production processes as it provides quick and automated 
method of teaching a system such as this, without the need for time consuming tool 
measurements. Table 3 shows the tests completed and corresponding results for tool wear, 
AE RMS and spindle power. 

 

Table 3. Tests conducted to determine sensor signals relationship to depth of cut and tool wear 
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Fig. 7. Sensor signal time graph for 1.5mm radial depth of cut and a new tool. Entry to cut can be seen at approximately 
4 seconds on the x axis, and exit from cut can be seen at approximately 50 seconds 

 

Fig. 8. Observed relationships between depth of cut and tool life from experimental data. Note; tool life consumed is  
a measure of metal removed by tool 

   

 
 

Fig. 9. All test results for spindle power and AE RMS. Note; tool life consumed is a measure of metal removed by tool 
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Fig. 9. shows all the results from the experiment. 
Fig. 8 shows two graphs; the first shows the change in AE RMS and spindle power as 

the tool wears, only observing tests using a depth of cut of 1.5mm. The second graph shows 
the change in AE RMS and spindle power as the depth of cut changes, using a new tool. It 
can be seen that depth of cut has a larger influence on the magnitude of both AE RMS and 
spindle power than tool wear. It can also be observed that AE RMS reduces as the tool 
wears.  

The results shown have been analysed using design of experiment software, MODDE 
from Umetrics. Using partial least square (PLS) fitting the coefficients that relate the factors 
to the responses can be determined. A linear relationship has been assumed for this model. 
From the experimental data shown above, the coefficients define the equations shown in 
Fig. 10. 

AE RMS = X1 * Tool Condition + Y1 * Depth of Cut + Z1 
Spindle Power = X2 * Tool Condition + Y2 * Depth of Cut +Z2  

 
X1 = 0.07608, Y1= -0.00035, Z1 = 0.01839, X2 = 0.32251 Y2 = 0.00705, Z2 = 1.14427. 

Fig. 10. New descriptor using AE RMS and spindle power data. These simultaneous equations can be rearranged to give 
a calculation for tool condition and depth of cut from sensor data 

The data has produced a model of a good fit as can be seen in Fig. 11. - the output 
from the PLS analysis.  

 

  

Fig. 11. Summary of fit of data in PLS model. Note that R2 is the coefficient of multiple determination, where a value 
near to 1 indicates a good fit of the data in the model. Q2 is the fraction of the variation of the response predicted by the 

model, where a value near 1 indicates good predictability of the model 
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The coefficients obtained from the model can be used to populate the DAG diagram 
shown previously in Fig. 4.2, defining the relationships between each node. Fig.12. shows 
the predicted depth of cut and tool condition obtained from the model equations. It also 
shows a good fit to the actual values of depth of cut and tool condition. 

 
Fig. 12. Actual vs. Predicted tool condition and depth of cut. Note; tool condition is a measure of metal removed by tool 

5. CONCLUSIONS 

A methodology for building a process monitoring system to enable fault detection in  
a milling process has been described. A system capable of determining root cause of process 
variation has been demonstrated on a common production problem where both depth of cut 
and tool condition can vary and impact on the performance of the machining process. 

It has been shown that depth of cut increases spindle power and acoustic emission 
measured during machining. Tool condition has been shown to affect the signals to a lesser 
extent where RMS magnitude increases with depth of cut increases and decreases with tool 
wear. 

Using both spindle power and acoustic emission signal magnitude, the model obtained 
from experimental data has been shown to clearly differentiate between depth of cut change 
or tool condition change using these sensor signals alone. Depth of cut has been shown to be 
fit to the actual values accurately, within 0.1mm using this system. Tool life has been 
assessed by the amount of work done by the tool (metal removed) and gives a fit to within 
10-20% of the tools life. 

Using the methodology defined, fault detection systems can be designed and built with 
minimal expense. Customised systems can therefore be implemented and tested on many 
production scenarios, providing a more flexible tool for process monitoring than is used in 
current aerospace manufacturing processes. 
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