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FAILURE MODE ANALYSISTO DEFINE PROCESSMONITORING SYSTEMS

The high costs of using skilled operators in prdigducprocesses has built a demand for reduced mgntights
out machining' manufacture. Process monitoringesys have become a widely researched area in rgearg
since there is a need for intelligent systems pdax@ the manual intervention in existing procesBaghermore,
using modern sensors and signal processing teaigoonitoring systems can obtain more informagibaut

a process and therefore reduce costs further thowagimised life of cutting tools, optimised cuttipgrameters
and reduced scrap or re-work. With many applicatizgas available, such as tool condition monitorafgtter
avoidance or feedback control of cutting parameigiis not always apparent what the key aspeaisired by
an intelligent monitoring system are. In additiatifferent machining processes have different dermasmt
limitations for monitoring. This paper considers amalytical approach to define the requirements
of a monitoring system. A process failure mode atffanalysis (FMEA) is carried out to determine the
weaknesses of current production processes. Frmraitalysis, the relationships between failuresisea and
effects can be used to populate conditional relatigps between process faults and sensor signairésa
in a monitoring system.

1. INTRODUCTION

Most research, testing and industrial applicatidnn@achining process monitoring
systems has considered tool condition monitoringhasprimary purpose for monitoring
a process [1]. Techniques have been applied tangirrdrilling, milling and grinding
processes with varying success [2-4]. A number tbeloresearch areas have considered
a fault detection approach where detection of ehattepth of cut change or cutting force
changes are the objective of the system [5]. Cardit dependencies between different
sensor signal features and input variables to agsohas been determined by carrying out
computations on experimental data, such as neuelvank methods or correlation
analysis [6].

One area lacking in the research is a detailedrstadeding of the relationship between
input variables and the measured effects. This mehat where changes are made to
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a process, the change to sensor signals is natycleaderstood. Current methods require
further experimental data and system training deoto be effective on unproven processes.

The majority of process monitoring applicationgy&rsolely the detection of process
failures, and not the detection of the cause dfifai With functionality to detect cause of
failures, a monitoring system is more capable @venting issues in the manufacturing
process since a cause of failure must be knowifféotarely correct the process. In addition
to this, identifying the effects that may occurnira failure is also beneficial, the most
commonly used method being on-machine probing &or geometry error measurement.

The first step in understanding the need for a tmong system for a machining
process is to consider what is missing from curnpemicesses. For this study, existing
machining processes have been interrogated tontieithe failures that have occurred, the
causes of these failures, the effects from theroeone and the detection methods currently
in use, by conducting an FMEA [7],[8]. An exampterh the FMEA is given in Table 1.

Table 1. Failure Mode Analysis Worksheet for thedess Step ‘Milling Operation’

Potential Current Process Controls
Potential
Process Step F ,10 en\l[a d Effect(s) of | SEV Potential Cause(s) of Failure OCC | Prevention of Failure Detection of Failure | DET | RPN
ailure Mode
Failure Mode Escape Cause
Part condition has changed 6 None Operator observation/CoC| 6 | 288
Material condition changed 5 None CoC g | 320
Cutting parameters too aggressive 6 None Double sign off 5 240
Spindle speed excites part vibration 5 None Tap test / harmoniser g | 320
Wrong tool used 4 Tooling control & spec. Double sign off 5 160
Wrong cutting parameters used 6 None Double sign off 5 240
‘ Tool is worn or damaged 5 Tooling control & spec. Double sign off 5 200
. Geometric part " - -
Run Milling Part position error changes depth of cut| 4 None Double sign off 7 224
® | Tool breakage | error, tool 8 = =
Program Tool length error changes depth of cut | 4 None Double sign off 7 224
damage, delay. < < 2
Tool not clamped correctly 4 None Double sign off 6 192
Excessive cutting force 5 None Operator observation 6 240
chatter due to tool stiffness 6 None Operator observation 6 288
chatter due to part stiffness 5 None Operator observation 6 | 240
Collision 14 None Operator observation 6 192
Insufficient coolant flow 6 None Operator observation 6 | 288
Incorrect coolant mix 4 None operator observation 6 192

By employing this technique, it is clearly showrattithe operator is utilised for
detection of many failures. In order to build aqgess where there is little or no reliance on
the operator, each one of these failures must r@wdbected by a monitoring system. The
list of potential failures, however, is vast, and e severity each failure must be
considered. The FMEA scoring system covers therggvef the effect, the frequency
of occurrence of the cause and the effectivenesshef current process control. As
a monitoring system is intended replace the exjspnocess control method, only the
severity and occurrence scores are used for ratkentpilure mode/cause combinations.

In this example all detection methods that regbirean intervention are short listed,
from this the failures are scored by the severitgtorence value. The highest scoring
failure modes for a generic milling operation aséeld in Table 2.
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Table 2. Highest scoring failure mode/cause contigina

Failure Mode Cause Score
Tool breakage Material property has changed 48
Tool breakage Part geometry has changed 48

Tool pull out Part geometry has changed 43
Collision Part geometry has changed 48

Tool breakage ‘ibration / chatter 48
Tool pull out ibration / chatter 48
Tool vibration Toal / tool holder is worn or damaged 42
Part vibration IMaterial property has changed 42
Tool vibration Material property has changed 42
Excessive tool wear IMaterial property has changed 42

For the generic milling process example, all falarodes exhibited the same potential
effects as follows:

» Poor surface roughness.

* Re-deposited swarf, chatter marks and other seidéffects.
* Localised surface damage or gouges.

» Sub surface damage / poor surface integrity.

 Feature dimension/geometry error.

 Tool holder damage.

* Machine damage.

* Delay to manufacture.

2. CAUSE AND EFFECT RELATIONSHIPS

It is vital for a process monitoring system to haweasideration of the cause and effect
relationships of process faults for intelligentet#ton and fault diagnosis to be achieved.
Experimental data is important to understand thekgionships in detail. Using the FMEA
described, the failures, causes and effects atedJishowever this method does not
interrogate the cause and effect relationshipsmFtioe FMEA, the key failures can be
targeted and an experimental plan can be definaghtterstand these relationships. The
method of interrogating the FMEA data and applying a monitoring system is described
later in this report.

A common failure shown in the FMEA is premature wiol condition. A root cause
of this failure may be material property change andeffect of this failure may be poor
surface finish. Several other interactions occurnduthis process that result from the root-
cause and these have been termed meta-causesafople increased cutting force. This
example is illustrated in Fig. 1.
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Process Failure: Tool Worn
Material property is the root cause
Excessive force is one of a number of meta-causes that gives increased wear
Process failure occurs once the tool has reached a worn state
A rough surface is one of several possible effects

Root Cause Meta-cause(s) Effect(s)

Material Part
property surface
change rough

Increase
cutting
force

Fig. 1. Example of a cause and effect relationship

With understanding of the cutting process, a nuntbeneta-causes can be proposed
for each failure mode. Experimental data can thended to determine the detect-ability of
these interactions. The above example can be eggandhat shown in Fig. 2.

Effects

Part
surface
rough

Meta-causes

Increase
cutting
force

Re-
deposited
swarf

Root Cause

Material

property
change

Increased
vibration

Sulk-
surface
damage

Increase
cutting
temp.

Part
geometry
error

Fig. 2. Multiple meta-causes and effects from glsimoot cause

3. IN PROCESS MEASUREMENT OF META CAUSES AND EFFEET

The meta-causes can also be perceived as effediseofoot cause and generally
speaking they occur during the machining process.measurement of their occurrence,
real time indirect measurement is most achievabla production process. For example,
vibration, acoustic emission (AE) [9] and spindever measurement.
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In this application, the effects from each failomede are in fact work piece or process
defects and so for the following descriptions tiag) now be referred to as defects. Where
measurement capability exists, the defects can leasuned intermittently by direct
measurement with inspection probes, roughnessrteest. Measurement of both meta-
causes and defects should be considered for thecmmgprehensive monitoring system.

Finally, from the FMEA data, the interactions betwell meta-causes, root causes and
defects should be defined. For these relationgiifie modelled, a network of interactions
is required rather than the flow diagram examplEim 2., Fig. 3. shows the form that these
relationships take in a directed acyclic graph (DAG

Meta-causes Root Causes Defects

Increased
cutting
force

Part
surface
rough

Re-
deposited
swarf

Increased
vibration

Increased
cutting
temp.

Part
geometry

error

Fig. 3. Example DAG associating meta-causes, raates and defects

A monitoring system would use the relationshipsraf in Fig. 3. in two ways:

(1) The meta-causes would be measured and a ramsecaould be diagnosed. The
defect(s) would then be anticipated and either orealsin process (where a method to do so
exists) or the user would be informed of the pa&dulefect.
(i)  The system would be retrospectively informddiee defect, either from measurement
equipment or an operator input. The system woudh timfer the most likely root cause
of this error from the previous meta-cause measen¢aiata.

One advantage from using the above functions isthieasystem can be self learning
and improve its diagnosis performance based onqusvesults.

4. EXPERIMENT AND RESULTS

Using the techniques described, a process morgt@ystem has been defined and
tested. The process of designing the system is shiowhis section, followed by the results
given from machining trials.
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First, an FMEA has been conducted choosing a praifilling operation on Titanium
6-4 as the process step in question. The FMEA sgonas completed by a number of
manufacturing engineers with a wide experienceerospace manufacturing. 19 different
failure modes were identified for the milling preseand for these, a total of 23 causes were
recorded.

For this example, the three most frequent and igbeoring causes are targeted by the
monitoring system and these were found to be:

. Material geometry variation.
. Material properties, such as hardness.
. Tool condition or tool life.

All of which are key process inputs to all machgqprocesses. Furthermore, these had
little or no detection methods other than the releaon skilled operators. These causes were
responsible for a number of failure modes as fatlow

. Part vibration.
. Tool vibration.
. Fixture failure.
. Collision.

. Tool pull-out.

. Tool breakage.
. Tool wear.

The meta-causes or measurable effects associatedach of the causes and failures
were identified as follows:

. Vibration.

. Cutting force.

. AE.

. Temperature.

. Spindle power.

The measureable effects from occurrence of theggsofailures were identified as:
Part geometry.
Tool geometry.
Part surface roughness.

Meta-causes Root Causes Defects

Fig. 4. Cause, meta-cause and effect DAG for mafiilling of Titanium
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This data can now be used to define the assocsalietween causes, meta-causes and
effects from the process failures. The network diagin Fig. 4. illustrates this. Similar
strategies, such as Bayesian networks, have prtivdoe an effective way of analysing
a network of relationships between elements of ehinang system [10],[11].

For the experimental demonstration of this methoghl the DAG shown in Fig. 5.
has been simplified to that shown in Fig. 5.

Meta-causes Root Causes Defects

Part
ceometry

.\ s
Acoustic

emissions

Fig. 5. Cause, meta-cause and effect DAG for erpari

An experiment has been conducted in order to daterthe conditional dependencies
between each node in Fig. 5. In addition to thialisg factors have been determined for the
sensor signals of spindle power and AE.

Using a 16mm diameter, 4 flute solid carbide entl, miofile milling operations were
conducted on a 730mm long titanium 6-4 test piegpindle power and AE RMS
measurements were taken for each cut. Tool weasumements were taken routinely during
the trials until tools reached a flank wear of On2mat which point the tool is deemed
completely worn. Radial depth of cut was increméritem 0.5mm to 3mm in 0.5mm steps.
Axial depth of cut was kept constant at 10mm. Txgeemental set up is shown in Fig. 6.

Current
Transducer Data
Acquisition
i AE Sensor
Workpiece

Pallet

Fig. 6. Experimental set up for profile millingats



Failure Mode Analysis to Define Process MonitorBygstems 125

In addition to categorising the tool wear statethy level of flank wear; this is also
done by calculating the % of tool life consumedadsnction of metal removed. Using this
method can be more practical in production processeit provides quick and automated
method of teaching a system such as this, withbat rteed for time consuming tool
measurements. Table 3 shows the tests completedaaresponding results for tool wear,
AE RMS and spindle power.

Table 3. Tests conducted to determine sensor sigektionship to depth of cut and tool wear

Metal Tool life .
) Tool Flank Depth of AE RMS Spindle
Test # Removed | consumed .
Wear [mm]) Cut (mm) [ Magnitude Power
[tm3) (%)

1 3.7 0.7 0.5 0.075 1.023
2 11.0 2.0 1.0 0.093 1. 666
3 2189 41 15 0.108 2.233

D.04
4 36.5 6.8 2.0 0.121 2.734
5 548 10.2 25 0.132 3.276
=] 76.7 143 3.0 0.131 3.761
7 80.3 150 0.5 0.076 1.062
8 876 163 1.0 0.087 1604
9 98.6 18.4 15 0.087 2.187

D.05
10 113.2 211 2.0 0.105 2.760
11 1314 245 25 0.113 3.280
12 153.3 28.6 3.0 0.117 3.852
13 157.0 293 0.5 0.053 1.057
14 1643 306 1.0 0.080 1.739
15 175.2 327 15 0.080 2.312

0.07
16 129.8 35.4 2.0 0.100 2.859
17 208.1 338 25 0.107 3.391
18 230.0 429 3.0 0.112 3.909
19 2336 435 0.5 D.065 1.134
20 2409 449 1.0 0.076 1.780
21 . 2519 46.9 L5 0.0B7 2.363
22 g.ie 266.5 49.7 20 D.085 2922
23 2847 531 25 0.103 3.504
24 306.6 57.1 3.0 0111 4027
25 310.3 57.8 0.5 o.cee 1.216
26 317.6 59.2 1.0 0.076 1774
27 . 3285 61.2 15 0.085 2392
28 c12 3431 639 20 0.085 3.032
29 36l 4 67.3 25 0.101 3587
30 3833 714 3.0 0.104 4185
31 38689 721 o5 0.064 1318
32 35842 735 1.0 0.075 1922
= . 405.2 75.5 15 0.083 2574
24 018 419.2 78.2 2.0 0.030 3.175
35 438.0 81l.6 2.5 0.092 3.7893
36 459.9 85.7 3.0 0.096 4.389
37 463.6 86.4 0.5 0.050 1441
38 4709 B87.8 1.0 0.068 2.009
39 - 481 8 898 15 0.075 2 699
40 c2t 4896 4 925 20 0.081 3.366
41 5147 855 25 0.086 4055
42 536.6 100.0 3.0 0.089 4.852
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Fig. 7. Sensor signal time graph for 1.5mm radégdt of cut and a new tool. Entry to cut can bexsgeapproximately
4 seconds on the x axis, and exit from cut carelee at approximately 50 seconds
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Fig. 9. All test results for spindle power and AEIR. Note; tool life consumed is a measure of meloved by tool
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Fig. 9. shows all the results from the experiment.

Fig. 8 shows two graphs; the first shows the changeE RMS and spindle power as
the tool wears, only observing tests using a depttut of 1.5mm. The second graph shows
the change in AE RMS and spindle power as the defptiut changes, using a new tool. It
can be seen that depth of cut has a larger infilencthe magnitude of both AE RMS and
spindle power than tool wear. It can also be olesbthat AE RMS reduces as the tool
wears.

The results shown have been analysed using desigxperiment software, MODDE
from Umetrics. Using partial least square (PLS)g the coefficients that relate the factors
to the responses can be determined. A linear oekttip has been assumed for this model.
From the experimental data shown above, the coefie define the equations shown in
Fig. 10.

AE RMS=X1* Tool Condition + Y1* Depth of Cut + Z1
Spindle Power = X2 * Tool Condition + Y2 * Depth of Cut +22

X1 =0.07608, Y1=-0.00035, Z1 = 0.01839, X2 = @32Y2 = 0.00705, Z2 = 1.14427.

Fig. 10. New descriptor using AE RMS and spindlespodata. These simultaneous equations can beinggad to give
a calculation for tool condition and depth of auini sensor data

The data has produced a model of a good fit asbeaseen in Fig. 11. - the output
from the PLS analysis.

Investigation: FMEA process monitaring 3 (PLS, comp.=2) R2

=
Summary of Fit H

1 model validity
O Reproducibility

1.0

0sT

06T

04T

02T

0.0

AE Rz~ Spindle Povwer~

Fig. 11. Summary of fit of data in PLS model. Ndtat R2 is the coefficient of multiple determinatiavhere a value
near to 1 indicates a good fit of the data in tleeleh. Q2 is the fraction of the variation of thepense predicted by the
model, where a value near 1 indicates good prddliitjeof the model
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The coefficients obtained from the model can balusepopulate the DAG diagram
shown previously in Fig. 4.2, defining the relasbips between each node. Fig.12. shows
the predicted depth of cut and tool condition aledi from the model equations. It also

shows a good fit to the actual values of depthubfand tool condition.
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Fig. 12. Actual vs. Predicted tool condition angbtiheof cut. Note; tool condition is a measure ofaheemoved by tool

5. CONCLUSIONS

A methodology for building a process monitoringteys to enable fault detection in
a milling process has been described. A systembbayoé determining root cause of process
variation has been demonstrated on a common priodyatoblem where both depth of cut
and tool condition can vary and impact on the pennce of the machining process.

It has been shown that depth of cut increases ppalwer and acoustic emission
measured during machining. Tool condition has sewn to affect the signals to a lesser
extent where RMS magnitude increases with depttubincreases and decreases with tool
wear.

Using both spindle power and acoustic emissionagigragnitude, the model obtained
from experimental data has been shown to cleaflgréntiate between depth of cut change
or tool condition change using these sensor sigalafte. Depth of cut has been shown to be
fit to the actual values accurately, within 0.1msing this system. Tool life has been
assessed by the amount of work done by the todia(memoved) and gives a fit to within
10-20% of the tools life.

Using the methodology defined, fault detection esyst can be designed and built with
minimal expense. Customised systems can there®rinplemented and tested on many
production scenarios, providing a more flexiblel ttmws process monitoring than is used in
current aerospace manufacturing processes.
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