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COGNITIVE FAILURE CLUSTER ENHANCING THE EFFICIENCY
AND THE PRECISION OF THE SELF-OPTIMIZING PROCESS MODEL
FOR BEVEL GEAR CONTACT PATTERNS

The contact patterns of bevel gear sets are anriemgdndicator for the acoustic quality of reateadrives. The
contact patterns are the result of complex int@astin the production process. This is due to mprocess
steps, numerous influencing factors and interdepecids. In general, their effect on product vaoiadiis not
fully comprehended. This impedes the design andrabof the production process based on a holatiglytical
model for new variants fulfilling the acoustic réguments. The approach with self-optimization isgible but
can take a long time for the training of the act#l neural networks and the necessary iteratiotis al satisfying
precision for the predicted process parameterstiieged. Also it can occur that the algorithm i$ converging
and therefore no satisfactory result is turned aiuall. In this paper an approach is presented gongpthe
flexibility of self-optimizing systems with the Higr precision of delimited solution finders calkb@ Cognitive
Failure Cluster (CFC). The improvements providedhsy clustering of the optimization program areleated
regarding the training time and the precision efitasult for a production lot of bevel gear sets.

1. INTRODUCTION

The manufacturing industry in high-wage countresia challenging situation due to
increasing pressure from competitors offering lovadour costs. This is especially evident
for standard products. So the high-wage countreagelto get more into the production
of more sophisticated or custom-made productsifiis requires a continuous improvement
of production technologies and capabilities. Howewuhis can mean more complex
processes, which are more difficult to control ¢tmeumerous influencing factors or that the
production process has to be adapted more frequénd to smaller production lots. The
outlined situation poses a polylemma between saate scope and value orientation and
planning orientation [2]. So the challenge is thmremically feasible manufacturing
of innovative and technologically demanding produathigh precision and quality.
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A good example depicting this polylemma is the nfacturing of rear axle drives,
because for these many variants exist, which aoglymed merely at medium lot sizes
(~ 10,000 units). Sometimes even different manufan processes are used for another
variant. The frequent change in variants leads hega planning effort for the necessary
adaptation of the manufacturing processes. Howelrercustomer does not accept that this
planning effort is added to the product price. THassolve the conflict the manufacturing
of rear axle drives in high-wage countries has ¢or&organised to keep it competitive.
As outlined by Schmitt et al. [3-5] self-optimizati can be an answer.

2. CONCEPT OF SELF-OPTIMIZATION

A self-optimized system is designed in that wayt thaan pursue different goals and
adapts its behaviour on the actual conditions efpfoduction system. While a change in the
production system is triggered externally by humaes the decision which variant will be
manufactured next, the decision’s effect on thapetion system could be predicted by the
self-optimized system. This means that it definew Bingle parameters of a manufacturing
process have to be adapted based on the partyhigido that point to fulfil the production
function. This concept is called Cognitive Toleramdatching (CTM). By this the step from
the optimization of single production steps to filmection-oriented optimization of the final
product is done. This benefits the value-orientatiad reduced the planning effort, solving
the aforementioned polylemma of production. Accogdio Frank et al. self-optimizing
systems have to continuously repeat the followinge actions [6]:

 Analysis of the actual conditionrs sensors and metrology valid process data.
» Determination of new system targetscognition— derive well-founded decision.
» Adaptation of the system behavicuractuators— altered processes.

Sensors are necessary to acquire the actual prooesd#ions. The sensors have to
return a quantitative value for the measurand wiifficiently small uncertainty. For the
production predominately the sensing of geometnid functional features is important. So
the main task is that sensors provide valid prodesa of the actual state. Otherwise there
could be a high risk taking a disadvantageous uabegisi.e. altering the process
unnecessarily or even worse doing nothing whilegfexess is out of tolerance. Based on
the valid process data by means of cognitive metleodounded decision can be derived.
This decision comprises new or adapted target saloe actuating variables, for instance
machining or assembly parameters. The decisiomgals then based on the function-
oriented optimization of the production processsidering several command variables, e.g.
adaptive functional tolerances. Subsequently, theistbn has to be implemented in the
production line by actuators such as manipulatbemdling systems, drives and also
humans, e.g. a worker who is changing the procasseters at the machine tool.

For the application scenario rear-axle drive tHé@aimising behaviour is achieved
by using cognitive methods based on Artificial Ndudetworks (ANN) [3-5]. These partly
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model the human capacity of solving complex prolsidmy formalized rules, which are
implemented using the Soar programming platform §Qar provides different learning
techniques such as chunking and reinforcement itlgarso that one can benefit from its
experiences. So it is possible to use already esdjkinowledge about the work pieces, the
manufacturing processes, similar cases and pracessgependencies. This knowledge has
to be stored in the self-optimizing system in a Wt it can be automatically processed.
However, beside the beneficial qualities of the mitbige methods with increasing
complexity of the production process the numberuwés rises significantly. This could
increase the processing time for the optimizatieyolnd the economically feasible margin.
Also it could reach the limit of the Random Accéésmory (RAM) of standard computers
used for process planning. Another issue is theigion of the suggested solution. For some
processes the solution is unfeasible, i.e. a tgh teviation between simulation and reality.

3. COMBINATION OF COGNITIVE TOLERANCE MATCHING ANDCOGNITIVE
FAILURE CLUSTER

The drawback of the current self-optimizing systsmattended to in this paper. To
achieve a more efficient and robust system theilfilly of the current self-optimizing
systems is combined with the higher precision dihdted solution finders.

For this the Cognitive Failure Cluster (CFC) isemrtated in the program structure
of the existing self-optimizing system for the remtle drive production process. The
adapted program structure is displayed in Fig. His Btructure describes the information
flow for the testing of the gear sets with singkmk testing machines, which is an important
preliminary process step to the final assemblyhef ¢jear box. By this testing the face
clearance and the block dimension are determinagse®on these parameters the mounting
of the single gears in the housing can be adamedhprove the running and acoustic
behaviour of the rear axle drive. A certain faceachnce is necessary to compensate pitch
and tooth thickness deviations and avoid meshitgyferences. On the other hand a too
high face clearance displaces the contact pattath may induce disturbing noise in
operation.

The testing machine measures the working variatiothe gear set. For the test the
crown gear is mounted at fixed axis-centre distancthe gauge gear, a master gear with
well known deviation. This gear is fixed on theven axis perpendicularly to the crown
gear axis. The gauge gear is then moved in thatthatythe gear flanks become engaged
(single flank contact with right flank left flankequence). While the engaged gears are
rotated, the difference in the angle of revolutbmiween the driving and the driven axis is
measured. Before the gears are rotated the flaksprayed with paint. It was assured that
the flanks are fully wetted but not dripping. A€ thaint film is not thicker than a remaining
film of lubricants used for the gear cutting no #ddal effect on the measurement is
expected. The paint is squeezed out in those areare the opposite flanks are in contact.
Having achieved a stable state, i.e. after sevevalutions, a distinct contact pattern is left.



58 Robert SCHMITT, Christian NIGGEMANN, MatthisAASS

Captura of the tooth fiank : : Calculation of Contact
withthe CCO-Camera || 'MagePreprocessing  —  Alinbute Exraction  =—1 "o b e [

l L]
Load Reference Values for Input bf the / Cognitive
Reference Value Configuration X d contact » Failure
Data Base patiem parameter / Chiias
| | | 1
| CTM Cluster 1 | | CTM Cluster 2 | ] CTM Cluster 3 | | CTM Cluster 4
Effectiveness-Check of the Implementation of the rew
{ Acson « Norral St < Construction Parameters [¢

Fig. 1. Operation sequence for Soar program enlidngéhe Cognitive Failure Cluster

The contact pattern is a 2D feature and results fifee cumulative deviations of the
gear set. So it is a more powerful function-oridngeality indicator than standard deviation
parameters as it considers the whole contact diea.contact patterns are acquired by 2
CCD cameras, one for the traction flanks and omeHhe thrust flanks. So in this case the
cameras are the sensing components to assessubemocess state. The CCD cameras are
arranged within the single flank gear testing maehso that the contact patterns can be
acquired in-line. Due to the harsh environmentalditions (paint spray, dust and light
intensity) additional measures have to be takemssure the high-quality imaging, e.g. spot
light illumination of region of interest, lens peation, counter air current device.

The outputs of the CCD cameras are colour imagéseoflanks (Fig. 2 left). In these
images the contact patterns are coherent dark megibhe images have to be processed
further to obtain the pattern features, e.g. fiigr edge enhancement, edge detection,
morphological operations to render a closed contdigorithms for these operations can be
found in standard works for image processing,ia.{8], [9].

Thrust flank Act’ual contact pattern

ThrustCoreHeel J >

Fig. 2. Contact pattern images and tolerancesdotact pattern
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The pattern features are for instance the pattength (“ThrustLengthCore”) and
width, the distances of the pattern towards eaclgeedf the gear flank (e.g.
“ThrustCoreHeel”), the centroid position of the teat or the inclination of its main axis
(Fig. 2 right). Displayed are the tolerance regitorghe pattern on the flat projection of the
flank, whereas region 1 beyond the continuous liee out of tolerance (not in order),
region 2 has an A rating (in order) and region thinithe dashed lines an AA rating.

For the latter the edge distances are increasetiOl®p regarding the lower feature
limit. This also means that at the same time thrensible length and width for the contact
pattern are reduced. The 10 %-rule applies fopadameters with the intention to be always
within the AA region and to reduce the still quitigh permissible variation of the contact
pattern alignment. The A tolerance is derived frestablished boundary values, which are
based on the experience with the regular manufiagtiand assembly processes. For the
10 %-margin a significant improvement of the geax lacoustic compared to the standard
set-up has been observed while still having a @efit contact surface necessary for the
power transmittance. However, in case the tiglakarance would be taken instead of the
actual tolerance, the production would become nuw#tly as more accurate machines
would be required for each manufacturing step &pkie process variation of the resulting
contact pattern low. So at this stage a flexiblénoigation system is needed. Taking into
account the tolerances the measurement proces® Has sufficiently repeatable so that
a founded decision could be taken based on theurezaent. It has been observed that for
50 repetitions the process variation for severaltact pattern features could be below
0.1 mm.

Having determined the contact pattern features, @#&C then classifies them
depending on their position deviation towards tbhenimal position (distance and direction).
For each class a separate Soar-based optimizatibine is implemented to obtain adequate
assembly parameters, which lead to an AA ratingtft® is the step for which the new
target values, in this case the assembly parameiersleduced by cognitive methods.

By applying the CFC one big optimization program tlee current system is replaced
by a number of smaller optimization programs. Thgam is to reduce the complexity of the
optimizer by eliminating unreasonable parameter loations. For instance, in case
of a shift of the contact pattern towards the upgdge of the flank a combination of the
assembly parameters face clearance and block diomedscreasing the distance towards
this edge further would not make sense. So withGR€ the optimization is related to
a smaller set of rules thus having a more efficgogram. Hence, a classification oriented
at the shifting direction is sensible. How the siigation is done is explained in more detall
in the next section.

4. FUNCTION-ORIENTED CLUSTERING OF GEOMETRICAL COMCT PATTERN
DEVIATIONS

The clustering, i.e. the generation of feature s#asis done to aggregate observed
pattern shifts for a lot of gear sets, e.g. a dbifthe upper left edge of the thrust flank, to
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a defined number of classes, whereas the cohemneach cluster is characterised by
a distance measure, e.g. the Euclidean distantieeimulti-dimensional parameter space
(i.e. Edge distances ThrustLengthCore, ThrustWidtkCThrustCoreHead... altogether 10
parameters) of the single observation towards linger centroid. A certain class of pattern
deviations correlates with a set of countermeasumplemented as rules in the
corresponding optimization program. So for a nequiry the acquired set of features is
then assigned to one of the generated classedirgytee adequate contact pattern shift.

Several established clustering methods have bealgsaa to assess their robustness,
the plausibility of the clustering and the calcidat performance for the present case.
Typical clustering methods are density-based, fobreal or perform a partitioning of the
data set. The clustering ends when either a preetkinumber of classes have been reached
or the classes have exceeded the margin of thmgligthing feature. Among the tested
methods were k-means, DBSCAN, k-medoid and Expecatdlaximization Clustering. For
the k-means method also different kernels (rag@llynomial, sigmoid, Epanechnikov) have
been evaluated. For the performance assessmenead80sgts randomly taken out of the
serial production have been measured and evalusied RapidMiner 5, an open- source
data mining development environment.

The best clustering results have been achievedthathk-means method [11] using the
Epanechnikov kernel [10]. This clustering methodtipans n observations into k clusters,
whereas each observation is assigned to the clahstiie nearest mean. This method
requires that the number of clusters k is defingdi@ri to the run of the algorithm. For this
expert knowledge about the assembly process anaahse-effect-relationship between
a certain pattern shift and the acoustic qualitytissed. Also a systematic refinement of k
has been done to find out how sensitive the clugjereacts upon a variation of this
parameter.
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Fig. 3. K-means clustering of centroid coordinaiksontact pattern for the thrust flank
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Exemplary, the result of the clustering is visuadizin Fig. 3 for the centroid
coordinates of the contact pattern for the thrissik. The centroid coordinates in the unit
mm are defined in the coordinate system of thekflauew Fig. 2), whereas the origin is
located at the tooth tip of the toe, meaning thakledge facing to the gear centre. Each spot
in the figure marks a different gear set. The tssshow that with the chosen clustering
algorithm four distinct regions can be detectedcating a shift of the centroid to the left, to
the right, upward or downward. The outcome was thase four classes are sufficient to
perform the function-oriented optimization of thentact pattern.
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The clustering has to be applied simultaneoushéoother contact pattern features so
that a certain gear set is properly assigned taigi class of rules. So basically the result
shown in Fig. 3 is only a small excerpt of the nadimensional feature space. The cross-
feature results are visualized in Fig. 4 by plaftithe cluster marks in the feature 1
(horizontal axis) vs. feature 2 (vertical axis) mtinate system. It is evident that the diagonal
is left out and that the matrix is symmetric asydhle axes are exchanged. It appears that
some features are quite well correlated while athesve no linear dependence. Their
correlation can be characterized by the correlatosfficient. For instance, the feature
“ThrustCoreHead” is highly correlated with the f@& “ThrustCoreCentroidY”. This is
evident as with a shift of the centroid in the pgsiy-direction (see coordinate system in
Fig. 2) also the distance to the edge at the tbetd increases. The oppositional effect
occurs for the feature “ThrustCoreBase”. Uncoreslatre the length of the contact pattern
and the angle of the main axis of the contact patte

In case of a new measurement of the gear set tineeddeatures will be assigned to
the appropriate class. For consecutive runs okthmeans clustering algorithm it can occur
that a data set is assigned once to the class Aoace to the class B. This variation is
related to the iterative procedure for k-means, re&® the initial k class centroids are
arbitrarily distributed in the feature space anentleach data set is assigned to that class to
which the distance measure to the centroid becemedlest. This does not generally affect
the precision of the optimization program. But @ncoccur that due to an inappropriate
assignation the necessary number of runs for thener can increase.

After the clustering is done the corresponding ra@ation routine will be initiated
providing recommended assembly parameters, whath tie an AA contact pattern after the
final assembly. The scenario is that the optimmais done after the single-flank testing,
which is a 100%-testing. At this stage the congadterns and their features are available.
Subsequently, the optimization with the cognitiystem must be done in the time after
having finished the single-flank testing and befdine final assembly. This limits the
available calculation time as it has to abide g plnoduction tact by all means to prevent
bottlenecks at the assembly line or disturbancethenflow of the components. So it is
important that the assembly parameters are knowhbetore the gear set is mounted. The
improvement in performance accomplished by embegdthe CFC in the cognitive system
Is discussed in the next section.

5. PERFORMANCE EVALUATION OF COMBINED SYSTEM

The performance of the cognitive system with embdd@FC is compared to the
performance of the original CTM system. Criteridos this comparison are the average
number of loop cycles required until a satisfactsojution (i.e. having a solution with AA
rating) is rendered by the optimizing program amel number of processed Soar rules per
computer core. Both criterions affect the calcolattime which is crucial if the cognitive
system should be utilised in the production line: the performance evaluation a Pentium4
with 2,8GHz, 2 cores, 2GB RAM and Windows XP Premging system has been used.
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In the left diagram in Fig. 5 the average numbeidonip cycles is plotted vs. the
number of training cycles to illustrate the relaship between the training effort and the
number of runs required until the AA rating is alad. The loop cycles characterise the
analysis with real test data. For the cognitivaesysbased merely on CTM random training
data (various deviations, e.g. data, which areobublerance for the tooth tip distance, the
tooth base distance, etc., one Soar program) haee bised. For the cognitive system
enhanced with the CFC also random training dataiqua deviations, 4 Soar programs)
were utilised while for the cognitive system witiFC specific Teach-In data (4 Soar
programs, specific training data for each prograrg, out of tolerance data for the head
distance for Soar program corresponding to clu8)enave been taken into account.

It can be observed that the latter set-up needsenage 0.3 less loop cycles to achieve
the AA rating than the CTM-based system. The marimumber of loop cycles was 60
even though this was an exemption, while obviotistyminimum was 1. Generally, for the
first 500 training cycles the average number desméarom 3 to 2 loop cycles for the
CTM+CFC+Specific Teach-In data set-up. Then forighér number of training cycles
the decline of the necessary number of loop cyméesmme weaker. For 5.000 training cycles
the CTM-based system still needed in average by ¢ycles. For the same performance the
enhanced system needed about 2.300 cycles, sol&&s%Irl his corresponds to a similar cut
in training time (15 minutes for 5.000 cycles comgaato 8 minutes for 2.300 cycles). An
explanation for this is that through the a pridastering the probability that the rule with
the highest function value for the optimizationktas taken increases (Reinforcement
learning according to the SARSA-(State-Action-Reiw&tate-Action method)). So the
desired results can be achieved faster. A higherteh training is beneficial later on in the
application of the system as the number of nece$sap cycles will be reduced.

An important issue for the training time is alse tlumber of tolerance regions (in this
case 3). For a higher number of these tolerandene@ further enhancement in precision is
possible. However, the calculation effort wouldraese over proportionally reaching the
processing limit of standard shop floor computéditsinkable would be a higher precision
for one or two features only, e.g. ThrustCoreHead for the whole set.

Taking a look at the right diagram in Fig. 5 it daobserved that for the CTM-based
system with one Soar program almost 768.000 rudee o be processed per core for each
run. For the system with CTM+CFC (4 Soar prograths) number diminishes to 230.000
rules, which is almost 70 % less. For the firsteclss amount of rules could reach the limit
that could be processed with standard PCs typicakyd on the shop floor, e.g. also the one
used for this evaluation. Here the RAM could pdee liottleneck. So the enhanced system
is a good option also for computers with fewer saed less calculation power.

So with the cognitive system enhanced by the CFS€atns feasible that it can be used
in the production line for rear axle drives. Bystithe step from the current CTM-based
off-line system is made towards the inline applarat Also due to the higher efficiency
of the enhanced system even more complex processéd be modelled in adequate time.
Furthermore it is thinkable to combine several gmeoptimization modules modelling
single manufacturing processes to an optimizatiarc
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6. CONCLUSIONS

The work presented how a cognitive system with-gptimizing behaviour could be
enhanced by integrating a Cognitive Failure Clustdns does a classification on which
a smaller and less complex optimization progranetbamn Cognitive Tolerance Matching
can operate. This method offers great autonomyntb dn adequate solution but can result
in long processing times due to an enormous nunabepossible solutions. By the
classification implausible parameter combinatioreseliminated so that the set of processed
rules diminishes while keeping up the desired auton This leads to a more efficient
method. The enhanced system is applied to the raetuing of rear axle drives, in special
to the optimization of the acoustic behaviour, whis essentially influenced at the final
assembly. Subject to the optimization are the aBseparameters face clearance and block
dimension. The optimization is based on the evedoabf the contact patterns as an
important indicator for the running behaviour of thhgaged gears. The contact patterns are
acquired by an inline Image processing system. i@egeometric features and tolerances
for each pattern are defined. Based on the featev@tions the data sets are assigned to
certain cluster using the k-means method. Thewptienization run with the cluster-specific
program revealed a significant improvement of mtran 50 % regarding the number
of loop cycles to reach the required precision pember of training cycles. Also by
rendering smaller optimization programs the har@waguirements could be reduced.
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