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EVALUATION OF THE SURFACE TOPOGRAPHY AFTER PRECISION 
MACHINING 

Analysis of the geometric features and determination of the condition of the surfaces machined during an 
abrasive process is of crucial importance for evaluation of their wear properties. Numerous parameters can be 
used for assessing topography of technical surfaces. Many of them contain information that is general or poorly 
correlated with the wear features. The group of parameters used for such purpose should include those that do 
not cause information redundancy and provide distinct information. Evaluation of the surface geometric structure 
after precision machining  is a difficult process due to the limited scope of unevenness heights that fit within the 
range of a few micrometers to a few nanometers. In this paper the synthetic indexes of the evaluation of extra 
smooth surfaces were created, taking into consideration numerous elementary parameters. The value of the 
synthetic index was determined as the geometric average of the partial indexes which, when compared to the 
arithmetic average, is more dependent on the data believed to be disadvantageous. 

1. INTRODUCTION 

Surface topography has always been a subject of interest of engineers, researchers and 
users. The general influence of the surface characteristics on the utility values of objects has 
been well known for years now. 

It was proved that the geometric structure of the surface exerts significant influence on 
a variety of processes [1], including abrasion processes, wear of combined roll and slide 
surfaces, contact endurance and deformations, stress concentration and fatigue endurance, 
resistance to corrosive influence, suppression of oscillations, connection tightness, contact 
resistance, contact heat conductivity, magnetic properties, reflection phenomena, 
absorptions and transmissivity of (light, electromagnetic etc.) waves. 

The increasing demands in the field of properties of the elements, as well as 
minimization of the material wear, elements’ mass and size, increase of their load capacity 
and resistance, as well as growth of the production technology led to the development  
of numerous measurement methods and a large group of parameters used for evaluation of 
the stereometric features of surfaces [2],[3],[4]. 
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The selection of evaluation parameters, which finally form a complementary system, 
requires the knowledge on numerous problems and availability of decision-supporting 
systems [5]. 

Machining precision, achieved for given processes, results from a number  
of limitations and is considerably lower than the precision that could be obtained using the 
given method of shaping object surface. 

The most important limitations that influence the precision of the produced elements 
include: 

• The limitations resulting from functional, exploitative, reliability-related and 
aesthetic demands, as well as the recipients’ preferences. 

• The limitations resulting from the acceptable product price as a whole depending on 
the quality, prices of competitive products, conditions on the given products’ market. 

• Technical limitations that influence the selection of requirements concerning the 
achieved precision, and therefore the choice of technological devices, tools, 
machining parameters, supervision and control methods. 

• The limitations resulting from the features of operations of production of semi-
products and the operations that precede the finish machining stage, and many others. 

Evaluation of the machining precision that would be achievable in the given 
production method assuming that all the economic, technical and organizational limitations 
were non-existent, is not easy. However, a rather simple relation can be stated: the border 
machining precision depends on the lowest layer thickness of the layer that can be removed 
as a result of elementary influence  of the tool’s active elements (single blades, abrasive 
grains or micro grains) (Fig. 1). 

 

Fig. 1. Area of abrasive nanomachining 
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In the microcutting processes, especially in precise machining, numerous phenomena 
and factors gain decisive importance in relation to the process results. They include: 
discontinuity of the process of creating microchips (in micro- and submicroscale), heat and 
mechanical deformations of the tools and the machined material, in areas surrounding the 
grains, depressed in the workpiece surface. Especially the linear and angular dislocations  
of the abrasive grains under the influence of cutting resistance and randomness of the 
microcutting process itself are the greater the smaller are the average sections of the cut 
layers with particular blades. 

In abrasive micromachining or precision grinding, the hollow of the blade in the 
machined material is considerably smaller than the rounding of its nose radii and is 
comparable to the height of the surface unevenness in the micro–cutting zone. 

2. EVALUATION OF SURFACE TOPOGRAPHY 

2.1. METHODOLOGY 

The problems connected with analysis of the stereometric features and determination 
of the condition of surfaces machined abrasively is of basic importance [6–8]. What can be 
now used in evaluation of the machined surface’s condition are over three hundred 
normalized parameters. Some of the parameters, describing the surface’s condition in 
a general manner, are strongly correlated with each other. Characterizing given, detailed 
surface features, they show high correlation with numerous general parameters and low 
correlation with other detailed ones. 

Evaluation of the surface topography after micro- and nanosmoothing is difficult due 
to the low measurement range. These are often values ranging from a few micrometers to  
a few nanometers of the surface unevenness height. With such low amplitude parameter 
values of the evaluated surface, its other features are starting to gain importance in its 
correct description more and more often. Evaluation of the microtopography is far more 
complicated here and can be considered both in relation to the proper selection of evaluation 
parameters of creation of new surface topography evaluation indexes. 

The aim of the realized analysis of the surface characterized by the greatest 
smoothness, which is covered mainly with flat or flat-like areas, was to develop  
a methodology of evaluation of such a surface.  

A synthetic coefficient, defined as the geometric average of components according to 
the following formula, was suggested: 
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The coefficient consists of four description elements, from w1 to w4.  
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1 = =
mean radius of islands SPW

w
mean distance between islands SOW  

 2 = =
mean radiusof field of the flat summit SPPWP

w
mean distancebetween flat fields SOPP  

 3 = =
arithmetical mean height of thesurface Sa

w
maximum height of thesurface Sz

 4 = =
max

mean distance between summits Lwrs
w

maximum distance between summits Lw   

In order to calculate the values of these partial coefficients, procedures directing their 
determination were developed. The procedures in question contain calculations of the 
components, the subsequent steps of calculating the partial coefficients, as well as the 
supplementary parameters. The methodology is as follows: 

• In the first step the surface parameters must be determined, e.g. amplitude 
parameters, i.e.: Sa, Sq, Sz, Sp etc. 

• In the next step the level h, on which the input surface will be cut. h was assumed to 
be 0,25*Sp, due to the fact that only a small number of summits cooperates with the 
surface that is characterized by similar stereometric parameters. The cut is performed 
to identify the remaining islands as the subsequent surface summits. 

• The top part of the surface created as a result of cutting must be changed into 
a binary image. The numerical operations on binary images are much faster and 
enable application of the existing functions in specialist applications used for image 
analysis. 

• What is searched for in such a binary image are connected fields, identifying 
subsequent summits; next, parameters of these fields are determined, i.e. their areas, 
centers of inertia, distances between the fields, their radii and the average values. 
What is also looked for among the selected fields are such islands that can be 
qualified as flat in accordance with the assumed definition. 

Calculation of the partial coefficients was begun by determination of a few 
supplementary parameters, which the following items depend on: 

• Lwh – the number of islands on height h, 
• Pwih  – the area of islands on height h, 
• Lsh – the number of flat islands (for the assumed criteria), 
• Psih – the area of flat islands, 
• Lwi – the average distance between the islands. 

Using the above mentioned supplementary parameters two dependencies were 
developed in which the following elements are compared:  

a) the number of flat summits in relation to all summits on the given cutting level – 
'
1U  (2), 

b) the sum of areas of islands defined as flat in relation to the sum of all the considered 
areas – ''

1U  (3). 
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First, the following are determined respectively: the average radius of the islands, and 
the average distance between the islands. Next, the first partial coefficient is calculated – the 
relation of the average radius of the islands to the average distance between them, described 
with dependence (4). 

 1 =
Rw

w
Lws  (4) 

When proceeding to analysis of the flat summits it should be remembered that in order 
to determine them or rather choose from among all the islands the following methodology 
was followed: 

• Each island was separated from the binary image, thus creating a board of objects, 
consisting of identified islands in the original surface image, 

• Each object had its views developed in two directions: X and Y (Fig. 2), 
• A derivative, for which the condition described with dependence (5) was checked, 

was calculated for each of the developed views. 

 

Fig. 2. Determination of the parameters of a single island 
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Value ε  was adopted as a pre-determined percentile of the value of Sp summit. If the 
given summit fulfilled the condition assuming that values of the derivative of the summit 
height (calculated for the data on the developed views of this summit in both directions) fit 
by 80% in ε± , the summit was declared flat. 

Having decided which of the analyzed islands were flat summits, the following 
parameters were calculated: the field of flat summits Psih, their average radius Rws, and the 
distance between them Lws. 

These parameters allow for determination of the second partial coefficient, 
analogically to the previous one, i.e. the ratio of the average flat summit’s radius Rws to the 
average distance between these summits Lws (6). 

 2 =
Rws

w
Lws  (6) 

The next partial coefficient is the ratio of two known surface amplitude parameters: Sa 
and Sz (7).  

 3 =
Sa

w
Sz  (7) 

The last partial coefficient that refers to the summit dispersal on the surface is the ratio 
of the average distance between the summits and the maximal distance (8). 

 4 =
max

Lwi
w

Lw  (8) 

Having calculated all the partial coefficients the synthetic, dimensionless coefficient 
was determined on basis of the previously stated ratio (1). 

When analyzing the components of the obtained coefficient it should be noticed that  
only one of them uses the existing description of its input parameters (Sa and Sz). 
The remaining ones are new. This results from the fact that the standard parameters (authors 
mean the normalized parameters) often do not reflect the character of the surface. This is the 
case with analyzing surfaces with low or very low unevenness’ values. 

3. EVALUATION OF THE SURFACE 

3.1. OBJECTS OF ANALYSIS 

Samples made from various exploitative materials were subject to research. 
The materials included, among others, steel, zirconium ceramics, aluminum and brass. 
Moreover, the samples were machined with various abrasive machining types, i.e. through 
grinding, smoothing and polishing. For each material 70 measurements were made. 



Evaluation of the Surface Topography after Precision Machining 77 

3.2. MEASUREMENT SYSTEM 

Talysurf CCI 6000 measurement system by Taylor Hobson company was used for the 
measurements of the surface topography. It is one of the most advanced non-contact optical 
systems that offers the possibility of spatial evaluation of the surface topography. 
The general view of the system used in the Laboratory of Micro- and Nanoengineering at 
the Department of Precise Mechanics at Koszalin University of Technology is presented in 
Fig. 3. 

 

Fig. 3. The general view of the Talysurf CCI 6000 measurement system by Taylor Hobson company 

The measurement method was based on an algorithm that the producer calls coherence 
correlation interferometry, CCI. The registered image of the interferential lines is processed 
by the computer with a Xeon processor. On basis of the processed data, a precise spatial 
map of the measured surface is created in high resolution. The device enables obtaining 
vertical resolution up to 10pm (0,1 Å), with the measurement range (in axis Z) to 10mm 
(dependent on the device configuration). Regardless of the applied magnification such 
a map may contain over 1 million of measurement points (1024 × 1024 points). 

Due to its high flexibility, the Talysurf CCI 6000 measurement system can be used in 
a wide variety of fields, including material engineering (analysis of polymeric materials), 
mechanics (measurements of the topography of precisely machined smooth and supersmooth 
surface), electronics (measurements of backings of semiconductor systems, analysis 
of MEMS, MOEMS structures), microoptics (microlenses, diffractive optics), biomedicine 
(implants, endoprosthesis). 



78  Robert TOMKOWSKI, Wojciech KACALAK, Dariusz LIPINSKI 

3.3. SURFACE ANALYSIS 

Samples made from various exploitative material were subject to research. The 
materials included, among others, steel, zirconium ceramics, aluminum and brass. 
Moreover, the samples were machined with various abrasive machining types, i.e. through 
grinding, smoothing and polishing.  

Table 1. Comparison of parameters and coefficients for surface after grinding 
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A series of tests with special interest in surfaces of high smoothness was realized on 
basis of the developed methodology. A group of surfaces after various abrasive machining 
was created. First, the group underwent parametric analysis using the TalyMap 5.1 software, 
Platinum version. The next step was analyzing the surface topography using the evaluation 
coefficients developed by the authors. What can be seen below are some results selected 
from a large set of data, analyses for the previously mentioned samples. 

Having analyzed both the partial coefficients, as well as the end synthetic index 
included, inter alia, in the hereby work, it must be noticed that they are highly dependent on 
the cut level h, on which the analysis will be made. This is obviously not a flaw. It is merely 
a cue hinting that this depth should be selected in such a way so as to take into consideration 
e.g. destination of the analyzed part and the character of the work it performs. The authors 
suggest that the h oscillated from 0,1 to 0,3 of the Sp summit parameter value. Moreover, 
what should also be kept in mind is the proper selection of value ε, as the proper 
classification of the given summit as a flat one or not depends on it. 

4. SUMMARY AND CONCLUSION 

This coefficient can be successfully used in evaluation of the surfaces that are 
characterized by high surface finish. The following parameters are often selected for 
classification of surfaces from the group of amplitude parameters: Sz, Ssk and Sku. Crucial 
conclusions result from the ratios of Sz:Sa and Sz:Sp. Parameters Ssk and Sku show low 
correlation with the following parameters in this group.  

Parameter Sz indirectly informs about the unevenness height and it is not sensitive to 
the influence of single random summits and pits. It also shows definite correlation resulting 
from the character of the layout of surface ordinates with parameters Sa and Sq. The ratios 
Sz:Sa and Sz:Sp are a good measure of the unevenness slenderness. 

However, the most important parameters should result from the relation between given 
2D parameters (e.g. distribution of summits) in mutually perpendicular directions as the 
shape and layout of the areas of probable contact that are being shaped are highly important. 
Selecting one set of parameters for all purposes is not justified. 

Depending on the conditions of the planned exploitation and, to some degree, also on 
the features of the surface shaping process, a group of parameters should be created that will 
maximize the informational usefulness, meet the condition of complementarity, include 
information on dispersion and changeability of the geometric parameters and also fulfill the 
condition of relation between parameter values and the given surface features and will also 
enable determination of possible process corrections. 
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