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STATISTICAL EVALUATION OF IMPACT FACTORS TO THE ENERGY 
CONSUMPTION OF MACHINE TOOLS  

In this paper, a method for the evaluation of the energy consumption of machine tools is presented. For this 
purpose, the energy consumption of various machine tools has been investigated experimentally. In order to 
increase the evaluation basis, measured values of energy consumption were also taken from literature. The 
evaluation contains an analysis of various factors concerning the productivity and the size of the investigated 
machine tools. This analysis is capable of detecting the impact factors to increase the energy-efficiency  
of production systems. It can further reduce the effort required for data acquisition when various machine tools 
are compared. 

1. INTRODUCTION  

In the last decades, the demand for consumer goods has been growing steadily, while 
the amount of available resources has decreased. As a result, there is a need for higher 
resource-efficiency. One of the most crucial resources is energy. The need for the energy-
efficiency is even expressed in the directive of the European Commission 2009/125/EC 
“Ecodesign of Energy-related Products (ErP)” [1]. Considering the fact that the machine 
tools play an important role in production, increasing the energy-efficiency of machine tools 
significantly contributes to more efficiency in the production. Thus, the production needs 
processes, realized by energy-efficient machines. Machine tools (MTs) cause a substantial 
amount of the industrial energy consumption. Therefore, they will be focused by the 
Ecodesign of Energy-related Products (ErP) Directive 2009/125/EC [1] and have to become 
more energy-efficient [18]. Moreover, with rising energy prices energy-efficiency becomes 
generally more important in economics. 

The aim of this paper is to investigate the dependence of the energy consumption  
of machine tools with regard to different technical parameters by using statistical analysis 
[2]. This investigation can reveal potentials for improvement of the energy-efficiency on the 
one hand, and, on the other hand, this investigation can set the basis for labels that enable  
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a better comparison of machine tools regarding the energy consumption. This paper only 
focuses on machining centres for milling operations. 

Recently, many machine tools have been investigated in terms of energy-efficiency.  
In order to generate a sufficiently large dataset for the statistical analysis, results  
of measurements of energy consumption of some machines that were conducted at the 
Institute for Machine Tools and Production Processes of the Chemnitz University  
of Technology are used in the dataset as well as measured results from literature [3-5]. The 
statistical analyses performed in this paper have two goals. The first goal consists in the 
reduction of the amount of technical parameters. For this reason, a principal component 
analysis is performed [6]. The second goal is to find out correlations and functions between 
the energy consumption and the other technical parameters. For doing this, correlation 
analysis and curve fitting are employed. The identified functions build a basis for the 
determination of energy labels for machine tools [2]. 

2. PREPARING THE DATASET 

2.1. ENERGY CONSUMPTION 

Electricity and compressed air are the main energy sources for machine tools. 
Electricity dominates the environmental impact of MTs at their entire life-cycle with a share 
of more than 90 % [7]. Therefore, this paper only considers electricity as energy source. 
Energy within material flows will be not regarded here [8]. 

Energy consumption is the cumulated power consumption in a defined period of time. 
Machine tools work in different operation modes [9-11]. Fig. 1 shows that the biggest share 
of the operation time of machine tools in a production line is taken up by time for waiting 
and moving operations without cutting [12],[13]. Moreover, many studies reveal that the 
majority of cutting processes do not increase the power consumption significantly  
[3-4],[8-9],[14]. Thus, for many cases the energy consumption of a machine tool can be 
evaluated approximately by the power consumption at the operation mode “ready for 
operation” in a time period plus the power consumption of the coolant system during an 
estimated cutting time. Therefore, the power consumption is used as an indicator for the 
energy consumption of a machine tool in this paper. 

 

Fig. 1. Workload of cutting machine tools in batch and large-batch production [12],[13] 
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The electric power consumption for this dataset was measured with current sensor 
clamps and power analysers at the main power supply of the MT. Furthermore, published 
measuring results from literature were included to enlarge the dataset for the statistical 
analyses [3-5]. 

2.2. IMPACT FACTORES 

The characteristic of a machine tool can be expressed by using many technical 
parameters that can be classified into the following groups:  

a) General data (e.g. machine type, manufacturing processes, year of manufacture): 
The machine type yield information about the possible realized manufacturing 
processes (e.g. turning or milling) and features (holes, pockets, 3-D-surfaces, etc.). 
Machines are comparable if they can realize the same type of machining processes 
[15], i. e. the machines are approximately of the same type. Furthermore, the year 
of manufacture can be linked up with the installed electric power, like shown in 
Fig. 2 on an example of the lathes installed at Volkswagen factories over 80 years 
[16]. The installed electric power has been rising steeply for the last decades. The 
significant increase of the installed electric power in the 1980s is related to the 
upcoming automation caused by the advance in computer technology. 

 

Fig. 2. Installed power of lathes in Volkswagen factories since 1930 [16] 

b) Size (e.g. mass, dimensions of workpieces, machines): 
Generally, the size of a MT corresponds to the maximum dimensions and the 
maximum mass of the workpiece. The space required for machining also needs to 
be considered. In literature [3], an approach to predict the energy consumption by 
using the work area is suggested. Thereby, the work area is defined by the length  
of the x and y axes for milling machines and by the length of x and z axes for 
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lathes. In literature [3], the work area is classified into three sizes: small 
(A < 0.1 m²), medium (0.1 < A < m²) and large (A > 1 m²). Within each class, the 
energy consumption is expected to depend on the complexity of the MT, i.e. more 
complex MTs are expected to consume more energy.  
The approach of classification was extended to 21 different MTs by own 
experimental measurements and values taken from other literature. Results of this 
approach are shown in Fig. 3. The power consumption in the operation mode 
"ready for operation" is taken as a measure. The MTs of the sample are sorted in 
ascending order of the energy consumption of each individual MT. It is obvious 
that the correlation to the work area is not distinct, though there is a general trend 
of larger MTs consuming more energy.  
In the presented study the complexity is expressed by the number of servo axes. It 
is interesting to note that the number of servo axes does not increase continuously 
with the power consumption order. Therefore, the expected higher energy 
consumption of more complex MTs is not generally true for the given sample. 
Another measure is the mass of the MTs. Bongard et al. [12] detected a quadratic 
relation between the mass and the installed electric power for horizontal lathes. 

  

Fig. 3. Machine size categories and number of servo axes as impact factors to power consumption 

c) Productivity (e.g. speed, acceleration, power and torque of spindle and feed 
drives):  
An important property of MTs is the productivity that can be expressed by speed, 
power and torque of the spindle, maximum feed rate and acceleration of the axes. 

d) Accuracy (e.g. positioning or machining accuracy):  
The evaluation and comparison of the accuracy of MTs from datasheets is difficult, 
as there are many different standards applied. MT-manufacturers publish different 
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declarations regarding the accuracy, for instance positioning or machining 
accuracy. Furthermore, thermal stability is becoming more important for MTs 
aiming for high precision. In this paper, the positioning accuracy is considered as  
a comparable and available parameter influencing the energy consumption. 
Additionally, the positioning accuracy is combined with the arithmetic mean  
of linear axes travel to define a parameter that represents the relationship between 
the accuracy and the machine size. 

e) Auxiliary systems (e.g. coolant, air cleaning, cooling, lubrication, control): 
Auxiliary systems work process-dependent (e.g. coolant, air cleaning) or process-
independent (e.g. drive cooling, lubrication, control, light, hydraulic). Process-
independent systems run most of the time, even when the machine is waiting. It is 
widely accepted that these systems inevitably cause a significant part in the 
measured power consumption in operation mode “ready for operation”. Process-
dependent systems like coolant pumps account for a large portion of the energy 
consumed while machining. However, the contribution of the process-dependent 
systems can only be determined under certain conditions during a manufacturing 
process. Standards like the Japanese TS B 0024-1 [17] and the upcoming 14955-3 
[1] might offer solutions for this problem.  
In fact, the power consumption of coolant systems can differ in a wide range. This 
is due to the fact that high and low pressure pumps are often installed in the same 
machine. The energy consumption of these systems further depends on the tool 
used. For the reason of simplicity, this paper does not regard process-dependent 
auxiliary systems and machining operations. 

f) Environmental conditions (e.g. forms and quality of needed energy, climate in 
workshop): 
Environmental conditions for MTs are difficult to describe by suitable values for  
an analysis of the energy consumption and are not going to be considered in the 
following analysis. 

2.3. STATISTICAL DATASET 

The dataset is represented by an m-by-p matrix X of m observed objects (measured 
machine tools) and p parameters (potential impact factors) in the form of 

      (1) 

The observed objects contain 21 machining centres which are capable of milling 
operations (18 milling and turn-mill machines and 3 mill-turn centres, [2-5]) Furthermore, 
the dataset provides 45 technical parameters including all allocable information from 
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machine documentations. From these 45 parameters 21 parameters are selected for further 
evaluation. The set of 21 parameters consists of the power consumption and 20 potential 
impact factors (see Table 1). The selection of the parameters was performed on the basis  
of the estimated impact, the comparability and the number of available values (more than 
50 %) of each parameter within the sample of MTs. 

Table 1. Technical parameters for the statistical analyses 

Class No. Description 
 0 electric power consumption in operation mode “ready for operation” [kW] 
a) 1 number of servo axes 

2 installed electrical power [kVA] 
b) 3 maximum work piece mass [kg] 

4 machine mass [kg] 
5 arithmetic mean of table size [mm] 
6 table area [m²] 
7 linear axis travel x [mm] 
8 linear axis travel y [mm] 
9 linear axis travel z [mm] 
10 work area of linear axis x-y (milling) or x-z (mill-turn) [m²] 
11 work volume of linear axis x-y-z [m³] 

c) 12 arithmetic mean of maximum feed rate (m·min-1) 
13 arithmetic mean of maximum acceleration in linear axes x-y-z [m·s-2] 
14 maximum tool mass [kg] 
15 maximum spindle power 100% ED [kW] 
16 maximum spindle torque 100% ED [Nm] 
17 nominal spindle speed [min-1] 
18 maximum spindle speed [min-1] 

d) 19 position accuracy [µm] 
20 arithmetic mean of linear axes travel / position accuracy [mm·µm-1] 

As a result, a 21-by-21 matrix for statistical analysing is achieved. In this matrix, there 
are some empty cells represented by NaN (Not a Number). The NaN-values arise due to the 
missed information from the literature. Some statistical methods are not able to work 
(ignore) with NaN-values. In order to overcome this fact, the NaN-values were substituted 
in two ways, either using mean values of the existing set of data or by “expert” estimations. 

3. STATISTICAL EVALUATION  

In this chapter, a method for the evaluation of the energy consumption of machine 
tools is presented. It contains three tools of statistical analysing which are carried out with 
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the dataset of machine parameters. In order to get an overview about the correlation between 
impact factors and the power consumption, corresponding correlation coefficients are 
computed as the first step. In a second step, the Principal Component Analysis (PCA) can 
show the parameters with significant impact on a dataset. This can help to reduce the 
number of parameters and thus the effort required for data acquisition and evaluation. In the 
last step, curve-fitting is performed to obtain a mathematical function between the impact 
factors and the power consumption. This can allow normalizing power consumption in 
order to compare different MTs. 

3.1. CORELLATION ANALYSIS 

The empiric correlation coefficient R describes the linear relationship between data x 
and y by the following equation: 
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Fig. 4. Scatter plots of 20 impact factors (abscissas) with power consumption (ordinates) and correlation coefficients 
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The range is -1<R<1 where -1 means “perfect” linear negative dependence, 1 “perfect” 
linear positive dependence and 0 no linear dependence. The results of 20 correlation 
analysis are depicted in Fig. 4. In this scatter plot, each abscissa and every ordinate 
represent a selected impact factor and the power consumption, respectively. The numbers  
of the parameters correspond to the numbers in Table 1. This visualization allows a better 
understanding of the calculated correlation coefficients. Moreover, a non-linear relation can 
be recognized. Based on this, some impact factors are selected for the curve-fitting.  

The evaluation shows the highest correlation coefficient R = 0.811 for the impact 
factor number 2 (installed electrical power) with regard to the power consumption.  
The second largest correlation coefficient R = 0.805 is found for parameter 15 (maximum 
spindle power 100% ED). That is, the installed electric power and the maximum spindle 
power can be expected to have the biggest impact on the energy consumption of a MT. 

3.2. PRINCIPAL COMPONENT ANALYSIS  

Principal Component Analysis (PCA) is a tool of the multivariate statistics and 
describes linear relations between parameters in a dataset assuming a normal (Gaussian) 
distribution of the parameters. The idea of PCA consists in the fact that data are a cloud 
of points in a p-dimensional space and the line with the best approximation for those points 
is the first “principle component”. It could be imagined like transforming the first axis of the 
p-dimensional space into the direction with the largest variance. The second axis (second 
principal component) stands orthogonal to the first one and have the second largest 
variance, and so on. The number of components is equal to the number of parameters. For 
performing the PCA, a p-by-p covariance matrix is defined. The values of each row vector 
in this matrix have to be centered regarding the mean value of the corresponding row vector. 
Furthermore, the values of each parameter were normalized to its arithmetic mean as the 
large-scale differences between parameters would falsify the PCA results (e.g. the parameter 
regarding the acceleration contain values in range from 5 to 14 m·s-2  and the parameter 
spindle speed is in range of 5000 to 60000min-1). The PCA cannot calculate with NaN-
values, which are present in the original dataset. As mentioned above, the NaN-values were 
replaced either by arithmetic mean values or by “expert estimations”. Subsequently, the 
PCA computes the covariance matrix from the matrix X. In the results of both PCA in form 
of the eigenvalues of the covariance matrix are assorted. The eigenvalues express the parts 
of a component in the total variance of the dataset. The variance-vectors (VarVect and 
VarVectCumul) show this in relative and cumulative way. Only 7 components represent 
approximately 95% of the total variance of the dataset. This implies that only 7 components 
should be considered in the next investigation (depicted by the bold lines) at which the other 
components can be neglected. 

Table 3 comprehends the matrix of coefficients of the first 7 components for the 
matrix with mean values as well as with expert-estimations. The values in the first column 
imply the contribution of the corresponding parameter to the first principal component; the 
second column corresponds to the second principal component, and so on. If the matrix with 
mean values  is  used,  it  is  obvious   that  the contribution  of   the parameter  19  (position 
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Table 2. Eigenvalues of the covariance-matrix 

No. of 
Comp. 

dataset with arithmetic mean values dataset with estimated values 
Eigenvalue VarVect VarVectCumul Eigenvalue VarVect VarVectCumul 

1 6.09 60.67 % 60.67 % 7.24 60.97 % 60.97 % 
2 0.88 8.77 % 69.44 % 1.22 10.26 % 71.24 % 
3 0.81 8.08 % 77.52 % 0.99 8.32 % 79.56 % 
4 0.70 7.01 % 84.53 % 0.78 6.55 % 86.11 % 
5 0.51 5.03 % 89.56 % 0.60 5.09 % 91.20 % 
6 0.34 3.38 % 92.94 % 0.39 3.24 % 94.45 % 
7 0.31 3.12 % 96.07 % 0.24 2.04 % 96.49 % 

8 0.15 1.48 % 97.55 % 0.16 1.37 % 97.86 % 
9 0.10 1.00 % 98.55 % 0.08 0.63 % 98.49 % 

10 0.05 0.54 % 99.08 % 0.06 0.50 % 99.00 % 
11 0.04 0.35 % 99.44 % 0.05 0.43 % 99.42 % 
12 0.02 0.18 % 99.62 % 0.03 0.21 % 99.64 % 
13 0.01 0.14 % 99.76 % 0.02 0.15 % 99.79 % 
14 0.01 0.09 % 99.86 % 0.01 0.10 % 99.89 % 
15 0.01 0.06 % 99.92 % 0.01 0.06 % 99.94 % 
16 0.00 0.04 % 99.97 % 0.00 0.03 % 99.97 % 
17 0.00 0.02 % 99.99 % 0.00 0.02 % 99.99 % 
18 0.00 0.01 % 100.00 % 0.00 0.01 % 100.00 % 
19 0.00 0.00 % 100.00 % 0.00 0.00 % 100.00 % 
20 0.00 0.00 % 100.00 % 0.00 0.00 % 100.00 % 
21 0.00 0.00 % 100.00 % 0.00 0.00 % 100.00 % 

accuracy) is negligible. A similar statement can be made for parameters 1 (number of servo 
axes), 13 (arithmetic mean of maximum acceleration in linear axes x-y-z) and 20 (arithmetic 
mean of linear axes travel / position accuracy). This further implies that these parameters are 
irrelevant for the statistical investigation. On the other hand, the largest contribution to the 
first component makes parameter 11 (work volume) followed by the parameters 10 (work 
area) and 16 (maximum spindle torque). Additionally, the parameter 16 and parameter 6 
have the most significant impact on the second and third component.  

If the matrix with expert estimations is analysed, the contribution made by parameters 
1, 13, and 19 is negligible. In contrast, the parameters 10, 11, and 16 contribute to the 
principal components significantly. In conclusion, it can be said that parameters 1, 19, and 
20 do not have to be regarded in the further analysis. The coefficients of the parameters over 
the components scatter in a wide range. For this reason, it is not possible to make a cluster 
of many parameters in order to reduce their number. Only the above mentioned parameters 
can be neglected, i.e. parameters 1, 13, 19, and 20. The scatter plots for these parameters 
(see Fig. 4) confirm this finding despite the corresponding correlation coefficients. It is 
surprising that the parameter concerning accelerations (No.13) does not play an important 
role. In this  case, the arithmetic mean  of  accelerations in all linear axes is not adequate.  It 



88   Volker WITTSTOCK, Martin KOLOUCH, Jorg PAETZOLD 
 

Table 3. Machine parameters and first 10 components of the PCA matrix 

 

would be reasonable to make such parameter by using the maximum value or product of the 
values. This can be seen on the example of parameter 5 (arithmetic mean of table size) and 6 
(table area). While the parameter 6 is strongly distinct, the variance of the parameter 5 is 
reduced by the calculation of the arithmetic mean. Furthermore, the contribution of the 
power consumption is not as significant as some other parameters though its variance 
cannot be neglected. 

3.3. CURVE-FITTING AND COEFFICIENT OF DETERMINATION 

In order to obtain a mathematical description for the dependence of the power 
consumption on the other parameters the curve-fitting is performed in this chapter. 
Additionally, the coefficient of determination (R²) is simultaneously evaluated to assess the 
quality of the mathematical function regarding the real parameter values. 

Based on the facts resulting from the PCA, the correlation coefficients and the scatter 
plots (see Fig. 4) the parameters 2, 4, 9, 10, 14, 15, 16, and 17 (see Table 4) are selected for 
the curve-fitting. 

The mathematical functions that parameter are estimated by the curve-fitting are 
chosen so that the trends in the scatter plots can be reproduced. In order to reproduce the 
trends in the scatter plots the following mathematical functions are chosen: 

 
1. Linear function in the form: baxy +=  
2. Exponential function in the form: dxbx cay expexp +=  
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3. Quadratic polynomial function in the form: cbxaxy ++= 2  
4. Power function in the form: caxy b +=  
The coefficients of these functions estimated by the curve-fitting are assorted 

including the coefficients of determination R2 in Table 4. 

Table 4. Values for the variables of the curve-fitting functions including coefficients of determination 
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Fig. 5. Curve-fit of selected parameters and power consumption 
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 If the coefficients of determination are evaluated it can be said that the dependences  
of the power consumption on the parameters 2, 4, 10, 15, and 16 are approximated best way 
by the quadratic polynomial function, the power function, the exponential function, the 
quadratic polynomial function and the power function, respectively. For the other 
parameters a mathematical expression does not seem to be very reasonable due to the 
coefficients of determination lower than 0.5. Fig. 5 depicts the plots of the real values and 
corresponding fitted functions. This figure implies that especially installed electric power 
(parameter 2), machine mass (parameter 4) and the maximal spindle power (parameter 15) 
can be recommended for the estimation of the power consumption of machining centres for 
milling operations under using the fitted functions. If the labeling of machine tools is 
addressed, the most appropriate parameters are the installed electric power (parameter 2) 
and the maximal spindle power (parameter 15). These two parameters can be normalized by 
the coefficients from the Table 4 with a sufficient accuracy in a simple way. 

4. CONCLUSION 

In this paper a methodology for the statistical evaluation of the energy consumption  
of machine tools is presented. Especially, the dependences of the energy consumption on 
various technical parameters of a machine tool are addressed whereby machining centres for 
milling operations are regarded. The power consumption in the operation mode “ready for 
operation” is used as the indicator for the overall energy consumption. The dataset is 
represented by an m-by-p matrix of m observed objects (measured machine tools) and p 
parameters (potential impact factors). A correlation analysis between 20 impact factors and 
the power consumption is carried out. Moreover, the Principal Component Analysis (PCA) 
is performed to find out parameters with significant impact on a dataset which allows 
reducing the number of parameters. Finally, curve-fitting is applied to derive mathematical 
functions between the impact factors and the power consumption. By use of this 
methodology, the number of parameters is reduced. Only five parameters feature a relation 
to the power consumption that can be described mathematically with sufficient accuracy. 
From these five parameters, three parameters should be used for the estimation of the power 
consumption of machining centres for milling operations. Furthermore, two parameters are 
suitable for normalizing the power consumption. The normalizing is enormously important 
for the intended labeling of MTs due to the diversity of their technical parameters. 

The future work will focus on the enlargement of the dataset. Furthermore, 
supplemental parameters are investigated in order to represent the features of machine tools 
in an appropriate way. 
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