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REVIEW OF POTENTIAL ADVANTAGESAND PITFALLSOF NUMERICAL
SIMULATION OF SELF-EXCITED VIBRATIONS

Machining stability is one of the most importantttars influencing the geometrical and dimensior@usacy
of the machined parts. Regenerative chatter is jarniianitation to the productivity and quality of anhining
operations due to poor surface finish and fastalrwear. In general there are two methods of stalzhalysis:
solution of differential equations of the systemfiequency domain or numerical simulation in timagin.
Fast and easy calculations in the frequency dorasénpossible using a simplified linear model oftiogt
process. Important limitations of these methodsdiffecult or impossible considering of changesdynamic
cutting force coefficients and dynamic charactarisf a process. Numerical simulation has not thesiations
and regards many specific phenomena of the cyttiogesses, therefore it is often used in the #tghihalysis.
The paper presents main advantages of numericallaion, which differentiates it from the analytica
solutions, as well as some inevitable difficultz®l limitations.

1. INTRODUCTION

Self-excited vibrations occurring in the cuttingppesses are a major limitation for the
achievable performance, machining quality, toa lind durability of machine tools. Hence
there is a need of stability limit prediction allmg selection of chatter-free cutting
parameters. Despite the real machine-tool-workpetoecture (MS) has a very complex
structure with many degrees of freedom, for mosgliegtions, such as turning and milling,
it can be reduced to a multimodal system with twgrdes of freedom [8],[21],[27]. It still
allows for consideration of two main causes of-s&lfited vibrations in machining, which
are mode coupling and regenerative effect. Modaluoh system for milling is presented in
Fig. 1, and general block diagram of a system eésgmted in Fig. 2. Differential equation
of the open system can be expressed in a matiix &sr

MP"+CP'+KP =F (1)

whereM, C, K— matrixes of masses, damping and stiffness ofrthehine-tool-workpiece
structure (MS)F — vector of the cutting forces in the MS coordanaystempP, P’, P” —
vectors of displacements, speeds and acceleratidhe MS system.
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Fig. 1. Dynamic model of 2-DOF system in milling
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Fig. 2. Block diagram of dynamic 2-DOF system

Blocks shown in Fig. 2 are described by transfercfions defined as the relation
between Laplace transforms of the inputs and ostgaoput signals of the cutting process
(CP) are displacements and displacement speetls madial directionr(andr’, see Figl).
The dependence of the cutting forces on vibrationsangential directiort is usually
ignored. Thus the variable cutting force componénendF; in the CP coordinate system
depend on dynamic changes of the uncut chip thekmaused by relative displacement
between the workpiece and the tool in radial dioec{inner modulation of the uncut chip
thicknessry) and the machined surface waviness left during ghevious pass (outer
modulationry) and the velocity of these displacememt9y.(Vector of these cutting forcé&s
Is the output of the cutting process and the irgguthe machine-tool-workpiece structure
MS (Fig. 2). Forced-, and F; (vector F) are projected to thg, y directions in the MS
coordinate system by th® matrix. Obtained forceB,andF,, (vectorFy) cause vibration
of the machine-tool-workpiece structurexrandy direction (vectorP). Those vibrations
after projection to the direction (by matriXB) become the output signal of the MS.
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Stability analysis is usually based on analyticgahwmerical solution of equation (1) in
the frequency domain [16]. Despite the conveniesfcstability limit calculation the main
disadvantage of these methods is the inabilitwéoy high difficulty) to consider machine-
tool system characteristic changes in a spaceiarg] éspecially in case of complex non-
linear characteristics of the cutting process. €Hamsitations stimulate attempts of stability
analysis based on time domain numerical simuldilomany research centers.

In a single iteration of a typical algorithm of nertal simulation (Fig. 3) the
following steps can be identified:

1) calculation of the current displacements ¥;) and velocities X, y;') for the each
vibration modd separately, and subsequently summed up,

2) projection of displacements and velocities of tlysteam &, y) to ther direction,
individually for each segment of the cutting edged storing the displacementss
an outer modulation; used in the next tool pass,

3) determination of the variable force componeRtisand F; in the cutting process
coordinates based on the assumed model depend#ribese forces on, ry andrr,

4) projection of the~, andF; forces to theé~, andF, forces and summing them up along
the cutting edge.

The first step contains the main difference betwstbility analysis in frequency
domain and numerical simulation in the time domaiediction of the vibration progress. In
fact, it contains the basic algorithm of the siniola Each step presented above and in
Fig. 3 exhibits many possibilities, which differetés numerical simulation from
the analytical solutions, as well as some diffiegltand limitations which are discussed in
the following paper sections

1) Calculation of x; y;, X/, ¥/’ 2)r=B [x]
—| i’
X=2x JJ’:ZJ’;- Storage of ry
| !
J— I -
o[f]-alg] 77
Vv t j =T, t

Fig. 3. A single iteration algorithm of numeric@hsilation of self-excited vibrations

2. DETERMINATION OF THE SYSTEM DISPLACEMENTS

There are two main approaches to the problem ofenigal simulation in the time
domain. In both of them each of the vibration modkethe multimodal system is analyzed
separately, and then the displacements are summedhe first approach, the most
commonly used, is based on the Runge-Kutta metbodhe approximation of solutions
of ordinary differential equations, e.g. [22],[34]he equation of motion of every single
mode " of the system is given by:
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My Di" + Cpi Pi’ + kpi i = (2)

wherep = x ory, whilem;, c,;, ky are the modal mass, the modal damping constanthand
modal spring constant of the’‘mode of the MS system. Dividing the left- andhtighand
side of the equation by the modal maggsyields:

pi" + 2dpwop; Pip’ + WGy Pig = Fy/My; (3)

wherew,; is the natural frequency,; is the damping ratio in the direction of theaxis.
From equation (3) the tool-workpiece relative desgimenip can be obtained using a first
or fourth order Runge-Kutta method.

The second approach, also often used, is the #igopresented in [37]. Here first the
acceleration in the present iteration is determif@d each vibration mode. Then the
displacement is obtained by double integration asohg velocity and displacement in
the previous iteration:

pi" = (FpB — Cip Dis' — kip PiB)/mip
pi' = pip +p"dt (4)
p; = pip +p'dt

wherep = x ory, index B — indicates forces, displacement and velocityhia previous
iteration.

In both approaches the displacements and velo@tesummed up for all vibration
modes of the multimodal system in both directions:

p=Xpi, P =Xp (5)

This step is absent when one mode system is coediddhe summation is plain
arithmetic addition.

Then the cutting forcels, can be calculated using displacement and velatipyesent
iteration and assumed cutting force model (seenjelo

3. DETERMINATION OF DYNAMIC CUTTING FORCES COMPONERS

3.1. DEPENDENCE OF THE UNCUT CHIP THICKNESS AND W&RIG CLEARANCE ANGLE
ON RELATIVE TOOL-WORKPIECE VIBRATIONS

The source of the cutting force variation is changkthe uncut chip thicknesk)(and
working clearance angle,. determined by the working clearance anglg(see Fig. 1):
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{h:ho_rt‘l'r’r:ho‘l'hd (6)
hg == —17)

Hpoe = Uo — 7

{n ~ tann =1, /v, (V)

where h — uncut chip thicknesshy — dynamic component of uncut chip thickness,
ho — nominal (steady state) value of uncut chip theds,a.. — working clearance angle,
a, — orthogonal clearance angie;- effective cutting speed angle.

When analyzing the complex cutting edge, forcesngcon the small individual
segment are considered separately and summed asifilon from machine-tool systexna
y to the cutting process systant (step 2 in Fig. 3) is a simple transformation timin)
of the coordinate systems. It should be noted hewedhat whilex andy displacement are
related to the whole machine-tool system, duringlimgi with helical flute cutter,
displacements are projected pandt directions for each individual part of cutting edg
separately, as the angular positignof the segment depends on the angle of cuttetignta
and the angle of twist of considered segment. Bigshows the scheme of angjg
determination. A generalized geometric model foy aamplex shape of the cutter can be
found in that of Engin and Altintas [10], howevdret principles stay the same. The
displacement of the cutting edge segment in peifipelad direction to the corresponding
workpiece surface and the speed of this displaceo@nbe described as (Fig. 4):

Tiij = X; sin @;; + ¥;€08 @;; (8)
r’tij = x'; sin Yij + y'icos Pij
[<pi,- = Qni t @y
out (©)
Pzj = D cotAg

wherei —iteration (time) indexj — index of considered segment distance from ttigercu
face,p,; — rotation angle of considered tooth on the cuftare,q;; — rotation angle
of considered segmerg,— distance of the segment from cutter fage; inclination angle
of the cutting edgd) — cutter diameter.

Instantaneous uncut chip thickness of the considsegment of the cutting edge can
be described as follows:

hij = fzsin@;; — 135 + 1py; (10)

wheref, — feed per tooth.

Obviously, equation (10) remains valid only for Esgp;; between engagement angle
@1 and exit anglep, (Fig. 4) [3],[18].However, for unstable cutting conditions, the uncut
chip thickness must be determined considering trana in the tool tip position caused by
the dynamic behavior of the cutter [22]. As illad&d in Fig. 5 backside cutting can occur at
a tooth rotation angle; located outside ¢4, ) region.
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Fig. 5. Backside cutting effect for unstable cigtja2]

The cutting edge segmentation should depend ontdble shape and include the
distribution of cutting forces on the cutting eddéerefore, for milling tools with round
corner (radial or ball end-mills) radial segmertatis preferred [40]. However division into
equal segments is often used especially in theytwal method or numerical integration
[13],[22]. In the case of end-mills the distributi@long the axis of the elementary parts
with the same shape and the same height is jub{iig].

Numerical simulation also enables to consider tifleence of the tool run out on the
uncut chip thickness. It can be achieved by thempsion of circular (movement in one
direction) or trochoidal tool trajectory [11]. lroth cases, the geometric parameters of the
process are constant along the tool path, but uirobthe cutter is introduced to the each
single point of cutting edge [9]. The most compbtase specifies different trochoidal paths
for each tooth, which means different active disnébr each tooth. Then the uncut chip
thickness for the current tooth is the differeneéween the current and the previous tool
path along the line segment connecting the cerftéreotool with the current cutting edge.
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This approach is used instead of the low computaticost approximation, proposed by
Martellotti [28]: f, sin(p). Trochoidal tool path improves simulation effeftentry ¢,=0°
and exit (,=18C) tool zone, where uncut chip thickness is not &quand it can achieve
significant values when run out is considered.

3.2. STORAGE OF THE SURFACE CREATED IN PREVIOUS CUT

Considering the outer modulation of the uncut chijckness requires storage in
a computer memory the relative tool-workpiece dispments in radial direction and
introducing it to the calculation of instantaneawscut chip thickness during the next
cutting edge pass as (Fig. 1, eq. 6). While it is quite simple for tumg, it is much more
complicated for milling. It can be realized by sige of all positions of the tool (and the
workpiece if necessary) or storage of the generatethce (generating surface profile).
Outer modulation can be reconstructed from theamtaheous position of the cutting edge
segment, calculated for theh tooth, thek-th level along the tool axis and th¢h iteration
step the tool having vibration and run out as [25]:

{x(i, Jj,k) = [R+ AR(j, k)]sing(i, j, k) + x.(i, k) — x¢, (i, k) + i%ﬁ (11)

y(i'jr k) = [R + AR(]! k)][l - COS(p(i,j, k)] + yt(ir k) - ytw(ir k)

whereN — number of iterations per revolutioR,— cutter radiusAR(j, k) — cutter run out
for j-th cutting edge an@-th level along the tool axi$y; — number of teethy — angular
position, f,— feed per toothx, y; Xw, Yw — displacements of tool and workpiecexiandy
directions.

Another solution is based on storage of millingl twenters and cutting edge positions
used for the generated surface calculation. Theatipes can be stored in the array as
a function of rotation angle with tjendexor simulation time intervals. Simulation of the
milling process necessitates three-dimensional asarfdetermination, which requires
registration of three coordinate position of cugtiedge X, vy, 3, three coordinates of the
cutter centerx, Y., z) and angular position of the cutting edgg (

Storage of the tool positions history is not vergmory consuming, but requires
determination of outer modulatiar for each iteration and for all segments of theicgt
edge (eq. 8). The alternative is storage of thd-wamokpiece displacements in radial
directionr, and use them in the next passesragvhich admittedly requires more computer
memory but reduces the calculation cost.

The main non-linearity of the cutting process isltumping out of cut due to
excessive vibrations, resulting in vanishing ottiogt forces. It can be taken into account by
more precise definition of thg value (outer modulation): it must be determined dsace
left on the surface generated in the previous orlieea passes (Fig. 6)
[17],[18],[24],[34],[37]:

rr=minimum{ r(t-T), hy +r (t-2T), 2hg + r(t-3T7)...} (12)
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Fig. 6. Exact kinematics approach for surface updab>0 - tool in cut, regular cutting ard-0 tool out of cut due
to excessive vibrations [18]

3.3. DYNAMIC FORCE DEPENDENCE ON THE UNCUT CHIP TEIKNESS CHANGES

Fundamental importance for the stability analygisutts has assumed model of the
cutting process — the dependence of dynamic cuftbrggs on uncut chip thickness changes
(stiffness componentd=, Fy) and velocity of vibrations inr direction (damping
componentd,, Fy). These dependencies refer to the elementary sdgohdhe cutting
edge (for example 1mm), as shown in section 3d.,&£iThe dependence of static (without
vibration) forces on the constant uncut chip thedsh, determined experimentally can be
expressed as non-linear function (Fig. 7a) [31]:

Fio= Cjbhg for j=r,t,a=0.7 (13)

For the analytical stability limit determinationefe relationships can be linearized
around steady state (Fig. 7b [14],[17],[30]). Tistifness components of the dynamic force
are:

F}'k = bhd dF}O/dh|h=h0 = ijahg'_lhd = bk]d hd (14)

This locally linearized exponential model is easlgplicable in turning, when the
steady state uncut chip thickndgsis constant. The stability lobes calculated usagh
a model are feed rate dependent, which is a welwkneffect, confirmed by practic€here
are also more advanced modeikich allow the identification of the dynamic aog force
coefficients via steady-state cutting tests e.gt i Nigm et al [26]. The dynamic cutting
force model presented in that of Jemielniak [1%]efenes the uncut chip thickness, the
cutting forces and the tool geometry (rake andrale@e angle) with respect to the dynamic
coordinate system, which is based on the instaotemeutting speed, (see Fig. 1). The
coefficients of this model can also be identifieal steady-state cutting tests.

In milling uncut chip thickness is inherently \arle, sometimes from zero to the
maximum, so there is not steady state uncut chigkrlss. Thus, the most common is
Altintas model [3],[5], which is based on a simigd dependence &, onh:

Fio = kjeb + kjcbhy for j=r, t (15)
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The model consists of two components. The firshésforce component related to the
friction and ploughing (proportional to the lengihthe cutting edgéd), given by theki
coefficients. The second component is related ® rtraterial shearing (proportional to
undeformed chip sectiohh), given by thek coefficients. Only the second component
of the force is influenced by changes of uncut ¢hipkness thus according to this model
the stiffness components of the dynamic forcegJigHig. 7c):

Fyx = kjcbhy for j=r, t (16)
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Fig. 7. Dependence of cutting force on the uncig thickness: a) non-linear power function, b) &neation
at the operating point, c) linear function, d) loaad global linearization

As can be seen in Fig. 7c, this model is very ineate at low uncut chip thickness.
The stability limit calculated using this linear d& in not feed rate dependent. Therefore
sometimes set of local models are used [12],[3@}edng the different cutting conditions,
e.g. within a certain range of the uncut chip thiess (Fig. 7d). On the other side even
simpler model of the dynamic forces is sometimesduswhere the radial force is
proportional to the tangential force [6],[7,[38]:

Fep = kicbhy;  Frp = Ko Fyg (17)

where cutting coefficientis. andk,. are constant

It should be strongly emphasized here that numlesicaulation allows application
of any characteristics of the dynamic cutting fer@nd accurate calculation of the force
value at each iteration, for each point of theiogtedge and corresponding actual uncut
chip thickness. Any non-linearity in the processtsas varying cutting coefficients along
the insert (equation 13), discontinuities along flonée due to inserts, and tool jumping out
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of cut due to excessive vibrations can be easihsiciered. The cutting force characteristic
can be also used in tabular form based on expetahdata. It is worth noting that there

were many efforts devoted to the modeling of theacutting forces dependence on uncut
chip thickness, e.g., those of Engin & Altintasddtaymakci [10],[19], and these results

can be easily used for numerical simulation of-s&tfited vibration.

3.4. DAMPING OF THE CUTTING PROCESS

Since the earliest works the influence of the wagkiclearance angle,. on the
stability limit was noticed [20],[39]. Well-knowrow speed stability effect is caused by
interference between the flank face of the cutingace [20], resulting from the declining
working clearance anglexd. Fig. 1), which occurs only for negative valuesvdfration
velocity ry . Damping component of the cutting force, usualassumed to be proportional
to the inclination of effective cutting spegadvhich is proportional to the vibration velocity
r¢, (Fig. 1, eq. 4) [1],[15],[35],[36]:

Fo=-9%p (18)

where ¢ — process damping coefficient. The value of thes constant, averaged for the
entire oscillation period, often determined by camipg the experimentally and analytically
obtained stability limit [29]. Jemielniak and Wi@ojtL 7] adopted additional assumption that
the working clearance angte. (see Fig. 1) during dynamic cutting is always pesi As

a result, the process damping force increaseditotynas the instantaneous clearance angle
approaches zero. This effect was achieved by udamendence describing the damping
force in the form:

—cibr,’ for . >0

Fj. = ¢!/ Vo

¢ =\=¢;bry + LSS forj=r, t (19)

for .’ <0

ag+re!/vg

where LSS — low speed stability coefficient deteroi experimentally.

On the other side since the early works [23],[4dhe researchers assumed, that the
working clearance angle,. can be negative, causing compression of the weckpi
material. A volume of the work material is presbgdhe tool flank when the tool travels in
the downward direction. A resistance force is gatestr at this deformed work material
against the further penetration of the tool inte Work material and is proportional to the
indented volume V. Thus the dumping force compamant described as:

E.=k.V; F.=uF, (20)

whereu — the friction coefficient.
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It should be noticed, the interference betweertdbkflank and machined surface does
not occur where the slope of machined surface besopositive [20]. Recently many
attempts to model this phenomenon were undertakemddeling of contact pressure and
the volume of the deformed material under flankef§8],[33],[35]. However, even after
such complex evaluation, the final results are ayed over the whole vibration cycle and
simplified to one linear factor as in equation (18esults presented in Fig. 8 shows
the importance of process damping especially fardpeeds.

3

[l Exp. Chatter
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w Exp. Marginal

>< Time Domain

— Analyt. with process damping

= Analyt. without process damping

N

N

Stable Cutting Depth (mm)

0 : ! : . .
1750 2250 2750 3250 3750 4250
Spindle Speed (RPM)

Fig. 8. Comparison of the stability limit obtainexperimentally, by time domain simulation, with baigal solution
with process damping and without it [8]

Again, using numerical simulation any nonlineastief the process, including its
damping can be easily taken into account. The dagnforce can be calculated for each
iteration step separately, considering any comptependencies of this force on
instantaneous conditions.

Obviously this dependence can be replaced by amr,otesulting from modeling or
experimental results. Sometimes the influence al twear on process damping is
considered [1],[2]. In that of Altintas et al [4he influence of the flank—wave contact was
modeled by considering both slope/{) and curvaturer(’ /v;?) of the waves.

3.5. DETERMINATION OF RESULTANT CUTTING FORCES

The resultant cutting force is the sum of the feregting on each small segment
of cutting edge engaged in cutting process dubdadgeneration and tool rotation (Fig. 3),
for all teeth. Each elementary force is calculatedthe base of the assumed cutting force
model (see above) as a sum of stiffness and damgongponents of cutting force. In
a specific angular position of the cuttey cutting force distribution changes along the
cutting edge. Projection of forces acting on thgeedegments in the process systém, (
Fj) to the machine systerf,, Fy;) also changes along the edge with the apgle

F=Y, 502, X2 (Fp+ Fe) forj=r,t (21)
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wherei subsequent angular cutter positigrk — index of the tootlg, — the teeth numbey,
— segment number along the axis.

Time domain numerical simulation methods allow tiealinearities and various tool
geometries, and — which is maybe most importaniewaconsidering the cutting forces
time inevitably varying with the uncut chip thiclgsechanging in milling even without any
vibrations. In frequency domain solutions the fereee integrated, averaged and considered
constant in stable machining [3].

4. ACCURACY AND COMPUTING COST OF SIMULATION

Time domain simulations can consider any charastteriof cutting process and
machine tool structure, the influence of inner anter modulation (e.g. exact dynamic chip
thickness history), tool geometry, run-out and othen-linearity such as tool jumping out
of cut, and past multiple regeneration wavinessseduby previous passes of the tool
(previous teeth). Therefore, any frequency domdiatter stability solution should be
compared against a numerical, time domain solw®oa benchmark [7].

The time domain simulation is very time consuming do necessity of calculating the
high number of the cutting edge segment positiefisoh machined surface, which must be
kept in the memory for accurate determination @& timcut chip thickness and multiple
regeneration. Simulation accuracy depends stramglyhe number of cutting edge segments
inversely proportional to the segment size, esfigadnen the number is small. The same is
with the iteration time (stept@q.4) — the shorter the better. Of course, contipataime is
proportional to number of cutting edge segmentsrandber of iteration steps per second.
However after crossing some number of segments iwrdtion steps the accuracy
effectiveness of increasing these numbers becoesssand less eminent still causing the
rise of computational costs [18]. Also shape oband cutting edge segments has a strong
influence on simulation accuracy and computati@est. For this reason division of the ball
end-mill to equal segments along the tool axis seenbe not justified [22]. A significant
computing cost reduction (simulation time), espéci@r the stability lobes determination,
can be achieved by separation of triangular andmjateral segments [23],[35] or matching
discretization steps according to the distance fritv@ stability limit, determined by
successive approximations [18]. Therefore it ionemended to take relatively large steps
in the beginning (far from the designated stabiimyit), while decreasing near to the final
solution. At the beginning of the century the disbiobe generation in the time domain
took approximately two days of computer time andly anfew seconds in the frequency
domain on a personal computer [10]. Computatiomalgy increased several times since
then, thus nowadays such computation takes sewvemnates.

5. SUMMARY AND CONCLUSIONS

Analytical prediction of the stability limit in fopuency domain provides fast and easy
obtainable results. However they are based on abgisimplified, linear models of the
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cutting process and machine tool characteristicss impossible or very difficult to take

into account these nonlinearities and — which enewore harmful — to consider continuous
changes of these characteristics due to e.g. chahdlkee workpiece shape. Numerical
simulation of self-excited vibrations has not thdissitations. Any characteristic of the

cutting force or the machine tool system can belyeasplemented, even in the form

of direct experimental results, tables. The mamithtion and drawback of the numerical
simulation is a high computational cost (time otoations). Therefore the algorithms and
data structures in simulation program are very ingya and should be carefully prepared.
On the other side, increasing computing power aldwr prediction of greater use

of numerical simulation especially for virtual mauhg. Integration of the machining

process simulation enabling precise stability lipriédiction directly to CAD/CAM systems

will allow optimal planning of the machining opdmats in a virtual environment before

testing them on costly trial cuts on the shop flggr
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