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REVIEW OF POTENTIAL ADVANTAGES AND PITFALLS OF NUMERICAL 
SIMULATION OF SELF-EXCITED VIBRATIONS 

Machining stability is one of the most important factors influencing the geometrical and dimensional accuracy  
of the machined parts. Regenerative chatter is a major limitation to the productivity and quality of machining 
operations due to poor surface finish and faster tool wear. In general there are two methods of stability analysis: 
solution of differential equations of the system in frequency domain or numerical simulation in time domain. 
Fast and easy calculations in the frequency domain are possible using a simplified linear model of cutting 
process. Important limitations of these methods are difficult or impossible considering of changes of dynamic 
cutting force coefficients and dynamic characteristic of a process. Numerical simulation has not these limitations 
and regards many specific phenomena of the cutting processes, therefore it is often used in the stability analysis. 
The paper presents main advantages of numerical simulation, which differentiates it from the analytical 
solutions, as well as some inevitable difficulties and limitations.  

1. INTRODUCTION 

Self-excited vibrations occurring in the cutting processes are a major limitation for the 
achievable performance, machining quality, tool life and durability of machine tools. Hence 
there is a need of stability limit prediction allowing selection of chatter-free cutting 
parameters. Despite the real machine-tool-workpiece structure (MS) has a very complex 
structure with many degrees of freedom, for most applications, such as turning and milling, 
it can be reduced to a multimodal system with two degrees of freedom [8],[21],[27]. It still 
allows for consideration of two main causes of self-excited vibrations in machining, which 
are mode coupling and regenerative effect. Model of such system for milling is presented in 
Fig. 1, and general block diagram of a system is presented in Fig. 2. Differential equation  
of the open system can be expressed in a matrix form as: 

 ��" � ��′ � �� � 	 (1) 

where M, C, K – matrixes of masses, damping and stiffness of the machine-tool-workpiece 
structure (MS), F – vector of the cutting forces in the MS coordinate system, P, P’, P”  – 
vectors of displacements, speeds and accelerations in the MS system. 
____________________ 
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Fig. 1. Dynamic model of 2-DOF system in milling 

   

Fig. 2. Block diagram of dynamic 2-DOF system 

Blocks shown in Fig. 2 are described by transfer functions defined as the relation 
between Laplace transforms of the inputs and outputs. Input signals of the cutting process 
(CP) are displacements and displacement speeds in the radial direction (r and r’ , see Fig. 1). 
The dependence of the cutting forces on vibrations in tangential direction t is usually 
ignored. Thus the variable cutting force components Fr and Ft in the CP coordinate system 
depend on dynamic changes of the uncut chip thickness caused by relative displacement 
between the workpiece and the tool in radial direction (inner modulation of the uncut chip 
thickness r t) and the machined surface waviness left during the previous pass (outer 
modulation rT) and the velocity of these displacements (r t’ ). Vector of these cutting forces F 
is the output of the cutting process and the input of the machine-tool-workpiece structure 
MS (Fig. 2). Forces Fr and Ft (vector F) are projected to the x, y directions in the MS 
coordinate system by the A matrix. Obtained forces Fx and Fy, (vector FN) cause vibration  
of the machine-tool-workpiece structure in x and y direction (vector P). Those vibrations 
after projection to the r direction (by matrix B) become the output signal of the MS. 
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Stability analysis is usually based on analytical or numerical solution of equation (1) in 
the frequency domain [16]. Despite the convenience of stability limit calculation the main 
disadvantage of these methods is the inability (or very high difficulty) to consider machine-
tool system characteristic changes in a space and time, especially in case of complex non-
linear characteristics of the cutting process. These limitations stimulate attempts of stability 
analysis based on time domain numerical simulation by many research centers. 

In a single iteration of a typical algorithm of numerical simulation (Fig. 3) the 
following steps can be identified: 

1) calculation of the current displacements (xi, yi) and velocities (xi’ , yi’ ) for the each 
vibration mode i separately, and subsequently summed up, 

2) projection of displacements and velocities of the system (x, y) to the r direction, 
individually for each segment of the cutting edge, and storing the displacements r as 
an outer modulation rT used in the next tool pass,  

3) determination of the variable force components Fr and Ft in the cutting process 
coordinates based on the assumed model dependences of these forces on r t , r t’  and rT, 

4) projection of the Fr and Ft forces to the Fx and Fy forces and summing them up along 
the cutting edge.  

The first step contains the main difference between stability analysis in frequency 
domain and numerical simulation in the time domain prediction of the vibration progress. In 
fact, it contains the basic algorithm of the simulation. Each step presented above and in 
Fig. 3 exhibits many possibilities, which differentiates numerical simulation from  
the analytical solutions, as well as some difficulties and limitations which are discussed in 
the following paper sections. 

 

Fig. 3. A single iteration algorithm of numerical simulation of self-excited vibrations 

2. DETERMINATION OF THE SYSTEM DISPLACEMENTS  

There are two main approaches to the problem of numerical simulation in the time 
domain. In both of them each of the vibration modes of the multimodal system is analyzed 
separately, and then the displacements are summed up. The first approach, the most 
commonly used, is based on the Runge-Kutta method for the approximation of solutions  
of ordinary differential equations, e.g. [22],[34]. The equation of motion of every single 
mode “i” of the system is given by: 
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�� 	��" � ��� 	�� ’ � ��� 	�� � 	� (2)  

where p = x or y, while mpi, cpi, kpi are the modal mass, the modal damping constant and the 
modal spring constant of the “i” mode of the MS system. Dividing the left- and right-hand 
side of the equation by the modal mass mpi yields: 

 ��" � 2������� 	���’ � ����� 	��� � 	� 
��⁄  (3)  

where ���� is the natural frequency, dpi is the damping ratio in the direction of the p axis. 
From equation (3) the tool-workpiece relative displacement p can be obtained using a first 
or fourth order Runge-Kutta method. 

The second approach, also often used, is the algorithm presented in [37]. Here first the 
acceleration in the present iteration is determined for each vibration mode. Then the 
displacement is obtained by double integration and using velocity and displacement in  
the previous iteration:  

 ���" � �	�� 	� 	���	���’ � 	���	����/
����� � ���� � �"d 																																								�� � ��� � ��d 																																									  (4) 

where p = x or y, index B – indicates forces, displacement and velocity in the previous 
iteration.  

In both approaches the displacements and velocities are summed up for all vibration 
modes of the multimodal system in both directions: 

 � � ∑�� ,			�′ � ∑��′ (5)  

This step is absent when one mode system is considered. The summation is plain 
arithmetic addition. 

Then the cutting forces Fp can be calculated using displacement and velocity in present 
iteration and assumed cutting force model (see below). 

3. DETERMINATION OF DYNAMIC CUTTING FORCES COMPONENTS 

3.1. DEPENDENCE OF THE UNCUT CHIP THICKNESS AND WORKING CLEARANCE ANGLE  
ON RELATIVE TOOL-WORKPIECE VIBRATIONS 

The source of the cutting force variation is changes of the uncut chip thickness (h) and 
working clearance angle αoe determined by the working clearance angle αoe (see Fig. 1):  
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 #	$ � $� � %& � %' � $� � $($( � �)%& � %'*																				 						  (6) 

 + ,-. � ,� � /										/ 0 tan / � %&′/45 (7) 

where h – uncut chip thickness, hd – dynamic component of uncut chip thickness,  
h0 – nominal (steady state) value of uncut chip thickness, αoe – working clearance angle,  
αo – orthogonal clearance angle, / – effective cutting speed angle.  

When analyzing the complex cutting edge, forces acting on the small individual 
segment are considered separately and summed up. Transition from machine-tool system x-
y to the cutting process system r-t (step 2 in Fig. 3) is a simple transformation (rotation)  
of the coordinate systems. It should be noted however, that while x and y displacement are 
related to the whole machine-tool system, during milling with helical flute cutter, 
displacements are projected on r and t directions for each individual part of cutting edge 
separately, as the angular position φij of the segment depends on the angle of cutter rotation 
and the angle of twist of considered segment. Fig. 4 shows the scheme of angle φij 
determination. A generalized geometric model for any complex shape of the cutter can be 
found in that of Engin and Altintas [10], however the principles stay the same. The 
displacement of the cutting edge segment in perpendicular direction to the corresponding 
workpiece surface and the speed of this displacement can be described as (Fig. 4): 

 6%&�7 � 8� sin ;�7 � <�cos;�7 					%′&�7 � 8′� sin ;�7 � <′�cos ;�7 														   (8) 

 ?;�7 � ;@� � ;A7	;A7 	� �ABC	 DEFGH																																												  (9) 

where i –iteration (time) index, j – index of considered segment distance from the cutter 
face,	;@�  – rotation angle of considered tooth on the cutter face, ;�7  – rotation angle  
of considered segment, zj – distance of the segment from cutter face, IJ – inclination angle 
of the cutting edge, D – cutter diameter. 

Instantaneous uncut chip thickness of the considered segment of the cutting edge can 
be described as follows: 

 $�7 � KA sin ;�7 � %�7 �	%'�7  (10) 

where fz – feed per tooth.  
Obviously, equation (10) remains valid only for angles ;�7 between engagement angle 

φ1 and exit angle φ2 (Fig. 4) [3],[18]. However, for unstable cutting conditions, the uncut 
chip thickness must be determined considering variations in the tool tip position caused by 
the dynamic behavior of the cutter [22]. As illustrated in Fig. 5 backside cutting can occur at  
a tooth rotation angle φij located outside ( φ1, φ2) region.  
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Fig. 4. Discretization of the cutting edge and the distribution of cutting forces for helical flute cutter 

 

Fig. 5. Backside cutting effect for unstable cutting [22] 

The cutting edge segmentation should depend on the tool shape and include the 
distribution of cutting forces on the cutting edge. Therefore, for milling tools with round 
corner (radial or ball end-mills) radial segmentation is preferred [40]. However division into 
equal segments is often used especially in the analytical method or numerical integration 
[13],[22]. In the case of end-mills the distribution along the axis of the elementary parts 
with the same shape and the same height is justified [25]. 

Numerical simulation also enables to consider the influence of the tool run out on the 
uncut chip thickness. It can be achieved by the assumption of circular (movement in one 
direction) or trochoidal tool trajectory [11]. In both cases, the geometric parameters of the 
process are constant along the tool path, but run out of the cutter is introduced to the each 
single point of cutting edge [9]. The most complex case specifies different trochoidal paths 
for each tooth, which means different active diameter for each tooth. Then the uncut chip 
thickness for the current tooth is the difference between the current and the previous tool 
path along the line segment connecting the center of the tool with the current cutting edge. 
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This approach is used instead of the low computational cost approximation, proposed by 
Martellotti [28]: fz sin(φ). Trochoidal tool path improves simulation effect of entry (φ1=0o) 
and exit (φ2=180o) tool zone, where uncut chip thickness is not equal 0 and it can achieve 
significant values when run out is considered.  

3.2. STORAGE OF THE SURFACE CREATED IN PREVIOUS CUT 

Considering the outer modulation of the uncut chip thickness requires storage in  
a computer memory the relative tool-workpiece displacements in radial direction r t and 
introducing it to the calculation of instantaneous uncut chip thickness during the next 
cutting edge pass as rT (Fig. 1, eq. 6). While it is quite simple for turning, it is much more 
complicated for milling. It can be realized by storage of all positions of the tool (and the 
workpiece if necessary) or storage of the generated surface (generating surface profile). 
Outer modulation can be reconstructed from the instantaneous position of the cutting edge 
segment, calculated for the j-th tooth, the k-th level along the tool axis and the i-th iteration 
step the tool having vibration and run out as [25]: 

 68)L, M, �* � NO � ∆O)M, �*QRLS;)L, M, �* � 8&)L, �* � 8&T)L, �* � L UVWXU<)L, M, �* � NO � ∆O)M, �*QN1 � �ZR;)L, M, �*Q � <&)L, �* � <&T)L, �*			 (11) 

where N – number of iterations per revolution, R – cutter radius, ∆O)M, �*	– cutter run out 
for j-th cutting edge and k-th level along the tool axis, Nf – number of teeth, φ – angular 
position, ft – feed per tooth, xt, yt, xtw, ytw – displacements of tool and workpiece in x and y 
directions. 

Another solution is based on storage of milling tool centers and cutting edge positions 
used for the generated surface calculation. The positions can be stored in the array as  
a function of rotation angle with the j index or simulation time intervals. Simulation of the 
milling process necessitates three-dimensional surface determination, which requires 
registration of three coordinate position of cutting edge (x, y, z), three coordinates of the 
cutter center (xc, yc, zc) and angular position of the cutting edge (φ). 

Storage of the tool positions history is not very memory consuming, but requires 
determination of outer modulation rT for each iteration and for all segments of the cutting 
edge (eq. 8). The alternative is storage of the tool-workpiece displacements in radial 
direction r t and use them in the next passes as rT, which admittedly requires more computer 
memory but reduces the calculation cost. 

The main non-linearity of the cutting process is tool jumping out of cut due to 
excessive vibrations, resulting in vanishing of cutting forces. It can be taken into account by 
more precise definition of the rT value (outer modulation): it must be determined as a trace 
left on the surface generated in the previous or earlier passes (Fig. 6) 
[17],[18],[24],[34],[37]: 

 rT = minimum {  r(t-T), h0 +r (t-2T), 2h0 + r(t-3T)…} (12) 
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Fig. 6. Exact kinematics approach for surface updating: h>0 - tool in cut, regular cutting and h=0 tool out of cut due  
to excessive vibrations [18] 

3.3. DYNAMIC FORCE DEPENDENCE ON THE UNCUT CHIP THICKNESS CHANGES  

Fundamental importance for the stability analysis results has assumed model of the 
cutting process – the dependence of dynamic cutting forces on uncut chip thickness changes 
(stiffness components Frk, Ftk) and velocity of vibrations in r direction (damping 
components Frc, Ftc). These dependencies refer to the elementary segment of the cutting 
edge (for example 1mm), as shown in section 3.1, Fig. 4. The dependence of static (without 
vibration) forces on the constant uncut chip thickness h0 determined experimentally can be 
expressed as non-linear function (Fig. 7a) [31]: 

 Fj0= Cj b $�[   for  j=r, t, a ≈ 0.7 (13) 

For the analytical stability limit determination these relationships can be linearized 
around steady state (Fig. 7b [14],[17],[30]). Thus stiffness components of the dynamic force 
are:  

 	7\ � ]$(	d	7� d$⁄ ^_`_a 	� ]�7b$�[cd$( � ]�7(	$( (14) 

This locally linearized exponential model is easily applicable in turning, when the 
steady state uncut chip thickness h0 is constant. The stability lobes calculated using such  
a model are feed rate dependent, which is a well-known effect, confirmed by practice. There 
are also more advanced models, which allow the identification of the dynamic cutting force 
coefficients via steady-state cutting tests e.g. that of Nigm et al [26]. The dynamic cutting 
force model presented in that of Jemielniak [15] redefines the uncut chip thickness, the 
cutting forces and the tool geometry (rake and clearance angle) with respect to the dynamic 
coordinate system, which is based on the instantaneous cutting speed ve (see Fig. 1). The 
coefficients of this model can also be identified via steady-state cutting tests. 

 In milling uncut chip thickness is inherently variable, sometimes from zero to the 
maximum, so there is not steady state uncut chip thickness. Thus, the most common is 
Altintas model [3],[5], which is based on a simplified dependence of Fj0 on h: 

 	7� � �7.] � �75]$�   for  j=r, t (15) 
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The model consists of two components. The first is the force component related to the 
friction and ploughing (proportional to the length of the cutting edge b), given by the kje 
coefficients. The second component is related to the material shearing (proportional to 
undeformed chip section bh0), given by the kjc coefficients. Only the second component  
of the force is influenced by changes of uncut chip thickness thus according to this model 
the stiffness components of the dynamic forces is [7] (Fig. 7c): 

 	7\ � �75]$(   for  j=r, t (16) 

 

Fig. 7. Dependence of cutting force on the uncut chip thickness: a) non-linear power function, b) linearization  
at the operating point, c) linear function, d) local and global linearization 

As can be seen in Fig. 7c, this model is very inaccurate at low uncut chip thickness. 
The stability limit calculated using this linear model in not feed rate dependent. Therefore 
sometimes set of local models are used [12],[32], covering the different cutting conditions, 
e.g. within a certain range of the uncut chip thickness (Fig. 7d). On the other side even 
simpler model of the dynamic forces is sometimes used, where the radial force is 
proportional to the tangential force [6],[7,[38]: 

 	&\ � �&5]$(; 					f\ � �f5	&\    (17) 

where cutting coefficients ktc and krc are constant 
It should be strongly emphasized here that numerical simulation allows application  

of any characteristics of the dynamic cutting forces and accurate calculation of the force 
value at each iteration, for each point of the cutting edge and corresponding actual uncut 
chip thickness. Any non-linearity in the process such as varying cutting coefficients along 
the insert (equation 13), discontinuities along the flute due to inserts, and tool jumping out 
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of cut due to excessive vibrations can be easily considered. The cutting force characteristic 
can be also used in tabular form based on experimental data. It is worth noting that there 
were many efforts devoted to the modeling of the actual cutting forces dependence on uncut 
chip thickness, e.g., those of Engin & Altintas, and Kaymakci [10],[19], and these results 
can be easily used for numerical simulation of self-excited vibration.  

3.4. DAMPING OF THE CUTTING PROCESS 

Since the earliest works the influence of the working clearance angle αoe on the 
stability limit was noticed [20],[39]. Well-known low speed stability effect is caused by 
interference between the flank face of the cutting surface [20], resulting from the declining 
working clearance angle (αoe Fig. 1), which occurs only for negative values of vibration 
velocity r t’ . Damping component of the cutting force, usually is assumed to be proportional 
to the inclination of effective cutting speed / which is proportional to the vibration velocity 
r t’ , (Fig. 1, eq. 4) [1],[15],[35],[36]: 

 	75 � � 5B	fX�gh ] (18) 

where cj – process damping coefficient. The value of the cj is constant, averaged for the 
entire oscillation period, often determined by comparing the experimentally and analytically 
obtained stability limit [29]. Jemielniak and Widota [17] adopted additional assumption that 
the working clearance angle αoe (see Fig. 1) during dynamic cutting is always positive. As  
a result, the process damping force increases to infinity as the instantaneous clearance angle 
approaches zero. This effect was achieved by using dependence describing the damping 
force in the form: 

 	75 � ?��7]	%&′																																for			%&′ k 0��7]	%&� � mnn fX� ga⁄oapfX� ga⁄ 			for			%&′ q 0         for j= r, t  (19)  

where LSS – low speed stability coefficient determined experimentally.  
On the other side since the early works [23],[41] some researchers assumed, that the 

working clearance angle αoe can be negative, causing compression of the workpiece 
material. A volume of the work material is pressed by the tool flank when the tool travels in 
the downward direction. A resistance force is generated at this deformed work material 
against the further penetration of the tool into the work material and is proportional to the 
indented volume V. Thus the dumping force components are described as: 

 	f5 � �f5r;					&5 � s	f5    (20) 

where s – the friction coefficient.  
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It should be noticed, the interference between the tool flank and machined surface does 
not occur where the slope of machined surface becomes positive [20]. Recently many 
attempts to model this phenomenon were undertaken by modeling of contact pressure and 
the volume of the deformed material under flank face [8],[33],[35]. However, even after 
such complex evaluation, the final results are averaged over the whole vibration cycle and 
simplified to one linear factor as in equation (18). Results presented in Fig. 8 shows  
the importance of process damping especially for low speeds. 

 

Fig. 8. Comparison of the stability limit obtained experimentally, by time domain simulation, with analytical solution 
with process damping and without it [8] 

Again, using numerical simulation any nonlinearities of the process, including its 
damping can be easily taken into account. The damping force can be calculated for each 
iteration step separately, considering any complex dependencies of this force on 
instantaneous conditions.  

Obviously this dependence can be replaced by any other, resulting from modeling or 
experimental results. Sometimes the influence of tool wear on process damping is 
considered [1],[2]. In that of Altintas et al [4], the influence of the flank–wave contact was 
modeled by considering both slope (r t’ /vc) and curvature (r t” /vc

2) of the waves. 

3.5. DETERMINATION OF RESULTANT CUTTING FORCES 

The resultant cutting force is the sum of the forces acting on each small segment 
of cutting edge engaged in cutting process due to the regeneration and tool rotation (Fig. 3), 
for all teeth. Each elementary force is calculated on the base of the assumed cutting force 
model (see above) as a sum of stiffness and damping components of cutting force. In  
a specific angular position of the cutter φij cutting force distribution changes along the 
cutting edge. Projection of forces acting on the edge segments in the process system (Ftij, 
Frij ) to the machine system (Fxij, Fyij) also changes along the edge with the angle φij: 

 	7 � ∑ ∑ ∑ )	7\ � 	75*[t7`duv�`uwAx\`d    for j = r, t (21) 
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where i subsequent angular cutter position φ, k – index of the tooth, zn – the teeth number, j 
– segment number along the axis. 

Time domain numerical simulation methods allow the nonlinearities and various tool 
geometries, and – which is maybe most important – allow considering the cutting forces 
time inevitably varying with the uncut chip thickness changing in milling even without any 
vibrations. In frequency domain solutions the forces are integrated, averaged and considered 
constant in stable machining [3].  

4. ACCURACY AND COMPUTING COST OF SIMULATION 

Time domain simulations can consider any characteristic of cutting process and 
machine tool structure, the influence of inner and outer modulation (e.g. exact dynamic chip 
thickness history), tool geometry, run-out and other non-linearity such as tool jumping out 
of cut, and past multiple regeneration waviness caused by previous passes of the tool 
(previous teeth). Therefore, any frequency domain chatter stability solution should be 
compared against a numerical, time domain solution as a benchmark [7]. 

The time domain simulation is very time consuming due to necessity of calculating the 
high number of the cutting edge segment positions left on machined surface, which must be 
kept in the memory for accurate determination of the uncut chip thickness and multiple 
regeneration. Simulation accuracy depends strongly on the number of cutting edge segments 
inversely proportional to the segment size, especially when the number is small. The same is 
with the iteration time (step dt eq.4) – the shorter the better. Of course, computation time is 
proportional to number of cutting edge segments and number of iteration steps per second. 
However after crossing some number of segments and iteration steps the accuracy 
effectiveness of increasing these numbers becomes less and less eminent still causing the 
rise of computational costs [18]. Also shape of a round cutting edge segments has a strong 
influence on simulation accuracy and computational cost. For this reason division of the ball 
end-mill to equal segments along the tool axis seems to be not justified [22]. A significant 
computing cost reduction (simulation time), especially for the stability lobes determination, 
can be achieved by separation of triangular and quadrilateral segments [23],[35] or matching 
discretization steps according to the distance from the stability limit, determined by 
successive approximations [18]. Therefore it is recommended to take relatively large steps 
in the beginning (far from the designated stability limit), while decreasing near to the final 
solution. At the beginning of the century the stability lobe generation in the time domain 
took approximately two days of computer time and only a few seconds in the frequency 
domain on a personal computer [10]. Computational power increased several times since 
then, thus nowadays such computation takes several minutes. 

5. SUMMARY AND CONCLUSIONS 

Analytical prediction of the stability limit in frequency domain provides fast and easy 
obtainable results. However they are based on radically simplified, linear models of the 
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cutting process and machine tool characteristics. It is impossible or very difficult to take 
into account these nonlinearities and – which is even more harmful – to consider continuous 
changes of these characteristics due to e.g. change of the workpiece shape. Numerical 
simulation of self-excited vibrations has not these limitations. Any characteristic of the 
cutting force or the machine tool system can be easily implemented, even in the form  
of direct experimental results, tables. The main limitation and drawback of the numerical 
simulation is a high computational cost (time of calculations). Therefore the algorithms and 
data structures in simulation program are very important and should be carefully prepared. 
On the other side, increasing computing power allows for prediction of greater use  
of numerical simulation especially for virtual machining. Integration of the machining 
process simulation enabling precise stability limit prediction directly to CAD/CAM systems 
will allow optimal planning of the machining operations in a virtual environment before 
testing them on costly trial cuts on the shop floor [7].  
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