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DYNAMIC PARAMETER IDENTIFICATION IN NONLINEAR MACHINING 

SYSTEMS 

The demand for enhanced performance of production systems in terms of quality, cost and reliability is ever 

increasing while, at the same time, there is a demand for shorter design cycles, longer operating life, 

minimisation of inspection and maintenance needs. Experimental testing and system identification in operational 

conditions still represent an important technique for monitoring, control and optimization. The term 

identification refers in the present paper to the extraction of information from experimental data and is used to 

estimate operational dynamic parameters for machining systems. Such an approach opens up the possibility  

of monitoring the dynamics of machining systems during operational conditions, and can also be used for control 

and/or predictive purposes. The machining system is considered nonlinear and excited by random loads. 

Parametric and nonparametric techniques are developed for the identification of the nonlinear machining system 

and their application is demonstrated both by numerical simulations and in actual machining operations. 

Discrimination between forced and self-excited vibrations is also presented. The ability of the developed 

methods to estimate operational dynamic parameters ODPs is presented in practical machining operations. 

1. INTRODUCTION 

The demand for enhanced performance of production systems in terms of quality, cost 

and reliability is ever increasing while, at the same time, there is a necessity for shorter 

design cycles, longer operating life, minimisation of inspection and maintenance needs. 

Through the employment of advanced computing systems it has become less expensive, 

both in terms of cost and time, to perform numerical simulations, than to run time and 

material consuming experiments. The consequence has been a shift toward computer-aided 

design and numerical trials, where virtual models are employed to simulate experiments, 

and to perform accurate and reliable predictions of system behaviour. 

Even if the technology of virtual prototyping is steadily growing in the manufacturing 

environment, experimental testing and system identification still play a key role because 

they provide valuable information to production engineers concerning the influence  

of process modification on the system’s performance, the prediction of failures in the 

system and support for the maintenance of the production systems. 
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In the classical machining theory and practice, a large body of research has been 

dedicated to study the machining system’s dynamics. Tlusty [13] has a major contribution in 

developing basic chatter theories. At a closer examination there are some phenomenological 

and technical shortcomings in the classical methodology. One critical issue is that the 

parameters describing dynamic behaviour of machining systems are extracted independently 

from the structure and from the process before connecting them together to study the 

system’s (see Fig. 1) [27].  

 

Fig. 1. Analysis of the dynamic behaviour of the machining system: a) Extraction of dynamic parameters of the elastic 

structure, b) Stability charts, c) Chatter marks as a result of dynamically unstable machining 

Machining system (MS) represents the interaction between the elastic structure and the 

chip formation process. This interaction is controlled at interface tool – chip – workpiece by 

a tiny elasto-plastic material volume. Separate extraction of modal parameters using  

off-operational experiments, e.g. experimental modal analysis (EMA), and controlled 

experiments for extraction of cutting process coefficients is not an efficient way  

of characterizing the machining system in operational conditions. From a theoretical point 

of view, using the direct analysis of the elastic structure and cutting process, based on the 

fundamental physical laws, may be insufficient for the accurate description of the behaviour 

of the system in real operational conditions. Regarding the cutting process, estimation  

of e.g. cutting force coefficients can be done only with barely simplified hypotheses, for few 

particular operations, and only in laboratory controlled conditions.  

The machining system is excited by loads that are unmeasurable and unpredictable. In 

addition, the dynamics of the system is changing continuously during machining due to 

variation of the load magnitude, orientation and position. Consequently, the dynamic 

behaviour of a machining system is not the same in open loop i.e. in off-operational 

conditions, and in closed loop i.e. in operational conditions. In this paper, the excitation 

forces are considered as stochastic processes. Lightly damped structures of machine tools 

have a response in a narrow frequency range and therefore the excitation can be, at least at 

the first approximation, considered an ideal white noise. When the dynamic response  

of machining systems is analysed, linear theory is often used. For linear machining systems, 

a large body of theory has been developed for the identification and modelling of system 

parameters in various dynamic configurations [16]. One of the main concerns in these 

theories is the study of self-excited vibration and the related stability analysis. For nonlinear 

machining systems with broad band excitation, closed form solutions are not available.  

a) b) c) 
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In this paper, the main objective is to investigate the response of the nonlinear 

machining system and to develop a procedure for dynamic parameter identification.  

1.1. NONLINEAR MACHINING SYSTEM 

In the problem inv the dynamic behaviour of machining systems, one major source  

of uncertainty is the excitation. The chip-formation process takes place through the intricate 

closed-loop interaction between the tool/toolholder and the workpiece/fixture with the 

machine tool structure in the primary loop (open-loop) and the chip formation process in the 

feedback. The static and dynamic behaviour of a machining systems is governed by mass, 

stiffness and damping. In a nonlinear system, damping and stiffness characteristics depend 

on the energy levels of the excitation [24-26]. The excitation of the machining system is 

mainly created by the cutting force. On the cutting force, other loads, of a thermal or  

a mechanical nature, are superimposed to generate the complex system’s response. The 

nature of these forces is nonlinear conservative and dissipative. Nonlinear conservative 

forces are restoring forces that arise from sources such as gravitational field and internal 

stresses generated in deformed structural elements. Apart from the cutting force, during the 

cutting process there are dynamic forces generated due to dynamic unbalance of rotating 

parts, inertia forces of reciprocating movable elements, bearing irregularities, and geometric 

imperfections in structural elements.  

Ito [12] has pointed out that nearly all the theories of elasticity available at present can 

deal with the problem of the monolithic elastic body, i.e., elastic body without any joints. In 

reality, the machine tool’s elastic structure consists of a relatively large number of structural 

elements. These elements are connected to each other by fixed and movable joints. 

Consequently, the elastic structure can be represented by a model with lumped masses 

connected by damping and ‘springs-like’ elements (see Fig. 2). The joint is one of the 

structural body components within a machine tool which causes that the static stiffness 

reduces and damping capacity increases [12]. 

 

Fig. 2. Machine tool with represented joints [4] 
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The static stiffness and the damping capacity of the joints determine to a large extent 

the overall stiffness and damping of machining systems and by this the stability margin  

of the latter. In classical machining dynamics theory, regenerative chatter is considered the 

major cause for instability [6],[13]. The analysis method of system’s stability is commonly 

implemented in three steps: (1) the modal parameters of the elastic structure are computed. 

This step is either experimentally performed e.g. using experimental modal analysis (EMA), 

or the corresponding modal parameters are obtained from FEM models. (2) the process 

stiffness and damping are estimated from cutting experiments and (3) stability diagrams are 

computed. The dynamic stability of machining system depends on overall stiffness and 

damping of the join elastic structure and process [45]. Regarding the elastic structure, for 

linear systems, the stiffness is obtained without difficulties from the material and geometric 

properties. If the structure is nonlinear the stiffness is not easily evaluated. Damping is 

normally not possible to analytically compute, even in linear cases. Concerning process 

stiffness and damping, their accurate estimation is difficult since they depend on the 

operational conditions and the estimation is possible only for very simple operations. 

Complications arise also due to the fact that for estimating the dynamic stiffness coefficient 

of one cutting variable the other variables must be maintained constant which normally is 

not trivial [27]. 

1.1.1. STRUCTURAL STIFFNESS AND DAMPING 

Structural stiffness and damping control the tolerances and surface finish of machined 

parts. By way of the cutting force, they affect productivity and energy efficiency. One of the 

basic rules of machine tool design is the principle of compliance [10]. According to this, the 

stiffness has to be carefully optimized. Stiffness is the capability of the structure to resist 

deformation or to hold a position under the applied loads. Static stiffness in machine tools 

refers to the performance of structures under the static or quasi-static loads. Static loads in 

machine tools normally come from gravity and cutting force, etc. Apart from the static 

loads, machine tools are subjected to constantly changing dynamic forces and the machine 

tool structure will deform according to its dynamic stiffness and the amplitude and 

frequency of the dynamic loads. Dynamic stiffness is related to damping. Damping defines 

the ability of a system or structure to dissipate energy. The need for high dynamic stiffness 

in a machining system results mainly from two separate aspects; in the first case inadequate 

dynamic stiffness will result in a poor surface finish quality of the machined parts due to 

relatively high levels of vibration occurring during machining processes. In the second case, 

low dynamic stiffness can lead to chatter and even damage the cutting tool and machine 

structures [10]. As a machine tool’s elastic structure is over dimensioned in terms  

of strength, and as its damping is relatively low, the deformation and energy dissipation will 

primary occur in the joints. Ito [12] presented an extensive survey of knowledge about 

machine tool joints and meantime provided a classification and a detailed analysis of the 

static, dynamic and thermal characteristics of stationary and sliding joints. 

Nonlinear and even random behaviour of machine tool structure was observed in 

experimental tests. Joints loaded normally to the contact surface are characterized by  

a hardening nonlinearity due to the increase of effective contact area with the increasing 
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load. The source of nonlinear behaviour is the change of contact area with the load 

magnitude. Although deformations are very small in relation to the overall model size, they 

significantly change the overall model stiffness and thus require a nonlinear treatment. 

Tangential contact deformation exhibits a softening nonlinearity [14]. At low loads, the 

clearance in the kinematic couplings causes slight displacement to take place in joints. The 

nature of the damping mechanism is very complex and depends on numerous factors, which 

makes the understanding of damping very difficult. The primary sources of damping for 

large flexible structures could fit into three categories: 

 material damping due to internal friction, 

 damping at joints and interconnections, 

 artificially introduced damping (dashpots). 

Compared to other damping types material damping is very low and can sometimes be 

ignored. Joint damping exists between joint surfaces. The more joint surfaces a machine 

has, the more damping exists. However the stiffness will be reduced because of joint 

surfaces. The damping at joints in turn depends on types of interconnection, joint loads, 

macroslippage and microslippage [12],[31]. It was shown by Rivin [16] that damping 

characteristics of the tool at large vibration amplitudes are due, largely, to normal contact 

deformations and at small amplitudes due to tangential contact deformations. Damping 

dissipation is basically a nonlinear and still not fully understood phenomenon because it is 

difficult to identify the major mechanisms responsible for energy dissipation. Dry friction 

effects (bodies in contact, sliding with respect to each other) and hysteretic damping are 

examples of nonlinear damping (Sherif and Abu Omar [32] Al-Bender [33]). It is important 

to note that dry friction affects the dynamics especially for small-amplitude motion. 

The Coulomb friction model is a phenomenological description of friction and has 

experimentally been validated for global sliding between two rigid bodies. For a sliding 

velocity v and a normal force FN the frictional force Ff is: 

Ff = −sgn(v) ⋅  ⋅ |FN|    （1） 

Coulomb friction is the most widely used model for sliding but also for micro-slip, and 

several modified friction models have been derived from it. Stribeck investigated roll 

bearings and noted that the coefficient of friction decreases at the onset of sliding until  

a certain velocity before it increases again. This behaviour is called the Stribeck effect [33].  

1.1.2. PROCESS STIFFNESS AND DAMPING 

The cutting process can be represented as a system with cutting parameters acting at 

the input in order to generate a cutting force at the output.  

F(t) = F(ap(t), vc(t), h(t),…) （ 2） 
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The dynamics of the cutting process is determined by various parameters, such as 

depth of cut, ap(t), cutting speed, vc(t), uncut chip thickness, h(t), workpiece and tool 

materials, tool geometry, etc. Simplified models are used to represent stiffness and damping 

of the cutting process. One such method represents the process by a linear spring and 

damper. 

If the cutting process is to be represented by the causal relationship between input 

cutting parameters and output force or torque, then some functions equivalent to structural 

stiffness and damping functions may be defined [35]. In a simpler approximation these 

functions can be resolved as coefficients describing the input-output causality. Under static 

conditions the output cutting force can be considered mainly as a function of uncut chip 

thickness and cutting speed. The chip thickness and cutting speed coefficients may be 

determined from the characteristics of the cutting force plotted as a function of chip 

thickness and cutting speed, respectively. Under dynamic conditions, a third coefficient has 

to be added, the penetration coefficient, to account for variations of the rate of penetration 

[17] and [18]. Estimation of the three dynamic coefficients is not trivial since each of them 

must be independently determined from dynamic experiments. 

Nonlinearities also characterize the cutting process due to boundary conditions in the 

chip formation. Self-excited vibration or chatter is itself a nonlinear phenomenon. An 

example of nonlinear model describes the nonlinear cutting force in the following 

expression [27].  

2 3

1 2 3 3

( ) ( ) ( )

c c c

x t x t x t
F K h K K K

v v v
   （3） 

where ( )x t is the vibration’s velocity and vc is the cutting speed. A large number  

of research studies on dynamics of machining and chatter are in particular focused on the 

estimation of dynamic stability by independently evaluating the dynamic characteristics  

of elastic structure and the cutting process, respectively. The two subsystems are considered 

as linear and deterministic. In addition, the contribution of process damping is rarely 

considered. Even in those conditions when process damping is considered, it is difficult to 

compare it to the structural damping as the damping is very sensitive to the testing method. 

The energy dissipation in the dynamic machining systems due to the cutting process is often 

neglected or simplified. For theoretical and practical interests, an appropriate model  

of process damping is indispensable and an effective identification procedure is required. 

There have been a number of studies considering the process damping and its identification.  

The main source of process damping has been previoulsy recognized as indentation  

of the tool edge and flank face into workpiece surface undulations [8]. A ploughing force 

model based on the interference between the tool and workpiece has been developed, the 

concept introduced by Elbestawi [7]. Based on the ploughing force analysis, a small volume 

of work material is pressed by the tool during wave cutting. Meantime, a resistance force is 

generated by the stress field inside the displaced work material [11]. Budak [1] and Tunc [2] 

have developed an approach to identify the process damping from the chatter tests using 

experimental and analytical stability limits. The process damping coefficient was then 

related to the instantaneous indentation volume. The determined coefficient is then used for 
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the stability limit and process damping prediction in different cases. Kurata [5] presented 

the identification method of the process damping from turning cutting tests. Tyler [3] 

developed an analytical solution for machining stability that included process damping 

effects. This approach refers to a velocity-dependent process damping model that describes 

the process damping force, FD, in the y direction normal to the machined surface, as  

a function of velocity, chip width, b, cutting speed, Vc, and a constant C 

D

c

b
F C y

V
   （4） 

The process damping coefficient was identified experimentally and it was shown that  

a smaller relief angle or higher wear results in increased process damping and improved 

stability at lower spindle speeds [15]. The model was inspired by Altintas [9] who 

developed a cutting force model with three dynamic cutting force coefficients related to 

regenerative chip thickness, velocity and acceleration terms, respectively. The dynamic 

cutting force coefficients are identified from controlled orthogonal cutting tests with a fast 

tool servo oscillated at the desired frequency to vary the phase between inner and outer 

modulations.  

Stability charts are determined for simple cutting operations mostly in orthogonal 

cutting and performing simpler cutting paths. Therefore, their practical usability is limited. 

Though the range of machining operations has not been increased, the mathematical 

formulations used to evaluate stability diagrams has been. Notable are recently developed 

studies using chaos theory and various approaches for mathematical representation and 

solving differential equations with delay, which describe one of the most conventional types 

of chatter [28]. Nonlinear models for treating regenerative chatter in machine tools were 

developed in [36]. Based on chaos theory, experimental and theoretical results were 

reported for a deeper understanding of nonlinear regenerative chatter [38]. 

A serious limitation in practical validation of stability diagrams originates from the 

lack of a rigorous criterion to unambiguously detect the stability limit, i.e., impending 

chatter. In other words, formulation of a discrimination criterion to distinguish between 

stability and instability will be much more useful from both a theoretical and especially  

a practical point of view. As the interest is to avoid chatter, developing robust 

discrimination criteria will help in solving the increasing dynamic problems on the shop 

floor. A reason for difficulties in studying the dynamic stability of machining systems is the 

lack of an explicit scheme for representing the join interaction of physical processes and 

structural systems in a unified way based on a common concept. Many of the methods used 

to analyze, control and optimize machining systems are based on off-line procedures or test 

environments that do not represents the actual machining conditions. 

2. ESTIMATION OF MACHINING SYSTEM’ S DYNAMIC PARAMETERS 

The approach presented in this paper has the purpose of identifying the operational 

dynamic parameters (ODPs) of a machining system i.e., the equivalent stiffness and 
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damping existing in a particular system configuration at a particular moment in time. 

Therefore, the approach introduces a probabilistic concept where both parametric and 

nonparametric identification models are employed. The machining system is considered 

inherently nonlinear. The contribution of the process stiffness and damping gives a new 

dimension to the system’s nonlinearity when the machining system is considered as  

an entity. 

A machining system is subjected to complex loads and it changes its configuration 

continuously as the tool moves along the workpiece or discretely as the system is 

reconfigured for various cutting operations. As a consequence both the excitation and the 

parameters characterizing the system may be considered random. An adequate description 

of excitation, and therefore of the response of the system to such loads has to be developed 

within the framework of the statistical dynamics theory [29],[39]. Embracing such  

a probabilistic point of view implies that some statistical characteristics of both the 

stochastic excitation and the systems response to this excitation have to be considered. In 

dynamic systems with random excitation and involving the interaction of coupled structures 

through a fluid or through other media, self-excited phenomena are frequently present [30]. 

The problem of discrimination between random forced vibration and self-excited 

oscillations is a key issue in the evaluation of the system stability boundary during 

operational conditions. The response of a dynamic system to a broadband random excitation 

will be a nonzero steady-state signal both in stable and in unstable states. In case of self-

excited vibration, the excitation persists even in the absence of the random excitation. The 

discrimination between self-excited and forced vibrations of a dynamical system in 

operational conditions is also important for selecting the type and strategy of control that 

may be implemented to reduce or cancel the vibration [37].  

The field of application of statistical dynamics, which is the focus of this paper, is 

related to two concepts: (i) identification and (ii) discrimination of the response of dynamic 

systems. The term identification refers to the formulation of a mathematical model of the 

dynamic system based upon on-line signal measurements, and belongs to a class of inverse 

dynamic problems encountered in various technological fields as suggested by Ljung [40]. 

The discrimination concept refers to a function to characterize the nature of the system’s 

response, i.e., to determine whether x(t) represents a forced vibration response or a self-

excited vibration. 

The problem of interest in machining system dynamics is the discrimination between 

forced and self-oscillations in view of the following considerations: 

 Formulation of a qualitative/semi-qualitative mathematical model of the 

machining system for subsequent quantitative analysis, 

 Evaluation of the system’s stability boundary, 

 Implementation of a suitable design for chatter control. 

The term “qualitative” implies that the model is based on a statistical analysis of the 

measured system’s response. Although the model-based identification approach presented in 

this paper leads to the estimation of key dynamic parameters (hereby the term “semi-

qualitative”), they are nevertheless meaningful only within a certain confidence interval. 

The main contributions of present paper are: (1) the development of parametric and 

non-parametric models based on identification techniques with the purpose of integrating 
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into a single step the estimation of dynamic parameters characterizing the machining 

system, (2) in non-parametric identification, implementing techniques for ODPs and random 

excitation estimation, (3) in parametric identification, the development of the recursive 

computational model of the machining system based on the data obtained during the actual 

operational regime. Through these contributions, a step is taken beyond the classical 

approach to analyse the dynamics of a machining system by separately identifying the 

structural and process parameters. With the process considered, the two substructures, 

tool/toolholder and workpiece/fixture, are coupled, in addition to the open loop (elastic 

structure), by a feedback loop closing the energy loop, through the thermoplastic chip 

formation mechanism [41]. The machining system can be completely analysed only in 

closed loop i.e. in operational conditions, since specially designed off-line experiments with 

controlled input, such as modal testing, give the response from only the open loop. 

3. NONPARAMETRIC IDENTIFICATION OF STIFFNESS AND DAMPING 

The nonparametric identification presented in this section follows the method 

developed by Roberts [19], Krenk [20] and Rüding [21]. The approach is implemented in 

three stages for generation of the response of a machining system using numerical 

simulation. At the first stage, a Gaussian white noise process is created. At second stage, the 

equation of motion is integrated with a suitably chosen time step, using a Runge-Kutta 

algorithm of 4
th

 order which enables accurate response histories to be obtained. Finally, the 

response data are processed appropriately to estimate the system’s parameters. 

 As already mentioned, the excitation of the machining system is considered as  

an external zero mean white-noise process with the covariance function 

E[W0(t)W0(t + )] = 2 S0 ( )   （5） 

where E[o] is the ensemble average, S0 is the intensity of white noise and  is the 

Dirac’s delta function. White noise process, labelled W0(t), consists of a train of Dirac’s 

delta impulses at t time increment. The pulses are linearly interpolated by the algorithm 

during numerical integration. The PSD (power spectral density) of the white noise process is 

given by Roberts [25]. 
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((  (6) 

 

If the frequency bandwidth of the system is max, the excitation will approximate white 

noise as long as max t << 1 as illustrated in Fig. 3 where the power spectrum density 

function is plotted.  
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The equation of motion of the machining system is described by a nonlinear stochastic 

differential equation with additive excitation 

0( ) ( ) ( )X h E u X W t  (7) 

 

Fig. 3. Power spectrum of white noise generated for simulation purpose 

where h(E) and u(X) are nonlinear damping and restoring forces of the machining 

system. If it is assumed that the state space variables X and X  enter the equation only 

through the total energy function E, then the damping is a function of the energy only. The 

total energy is given by 

21
( )

2
E X U X  (8) 

where 

0
( ) ( )

X

U X u d  (9) 

In Eq. (8) the right-hand side represents the sum of the kinetic energy (first term) and 

the potential energy (second term). With a change of variables, X1 = X and X2 = X , Eq. (7) 

is transformed into a set of two stochastic differential equations. Under the assumption  

of Gaussian white noise excitation, the state space vector (X1, X2) represents a Markov 

process and the probability density is the solution of Fokker-Plank equation  

2

2 2 1 0 2

1 2 2

( ) ( ) 0
p p p

x h E x u x p S
x x x

 (10) 

where p(x1, x2; t) is the joint probability distribution of the state space vector (x1, x2). 

The initial conditions are given in the form: p(x1, x2; t0) = (x1 - x10) (x2 - x20) for x1(t0) = 0 

and x2(t0) = x20. Different boundary conditions are possible such as reflective boundary, 

absorbing boundary and periodic boundary as discussed by Risken [22]. 
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The solution to the Eq. (10) was obtained by Caughey [23] in the form 

1 2
0

0

1
( , ) exp ( )

E

p x x C h d
S

 (11) 

where C is a normalizing constant.  

The integral in the above expression is denoted damping potential. Eq. (12) shows that 

the damping function h(E) can be obtained from the derivative of the damping potential 

H(E).  

H(E) = 
0

( )
E

h d  (12) 

The damping potential is computed from Eq. (10) after the join probability p(x1, x2) is 

evaluated.  Because, the probability density distribution of the energy envelope process, 

E(t), can be estimated from system’s response, it is required to relate the distribution p(E) to 

the distribution p(x1, x2).  

3.1. STIFFNESS ESTIMATION 

The estimation of system stiffness from the stochastic response obtained from Eq. (7) 

follows the Rüding approach [19]. The response X is calculated at zero level where the 

energy is kinetic energy and at extremes where the energy is potential energy. A nonlinear 

system with linear-cubic stiffness was used to generate a stochastic response. The damping 

ratio in system is low,  = 0.1%. The results of stiffness identification are illustrated in Fig. 

4. Each blue dot represents a sample (1/2 2x , X
2
). The values of the potential energy U(x), 

the target values, calculated from Eq. (8) are represented by the red line and the potential 

energy U(x) for an equivalent linear system is represented by the green dash line. There are 

two important observations: (1) the points are centred on the target line, which represents 

the analytical expression. (2) the departure from linearity is apparent.   

 

Fig. 4. Kinetic 1/2
2x  and potential U(x) energy for a light damped system, 0.1% and linear-cubic stiffness 
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By increasing the damping to 1% the level of scatter around the target value increases 

as illustrated in Fig. 5. This is due to the variation of the energy from one period to another. 

As damping tends to zero, the energy will also vary infinitely slow, and the points will be 

virtually located on the target line. Therefore the distance between a point and the line 

represents the energy variation during a half of period, i.e. the time between sampling  

a kinetic energy value and a potential energy value (or between a zero and an extreme 

value). By examining the plots in Figs. 4 and 5 it is reasonable to accept that an estimate  

of U(x) can be extracted from the dot cloud.  The procedure is based on dividing the energy 

plane in zones of equal energy. This approach is illustrated in Fig. 6. As the potential 

function U(x) is unknown at the beginning of the procedure, the potential energy is 

approximated to the linear value. After that, the samples (1/2 2x , x
2
) are averaged in each 

zone and one average value is calculated for each zone as illustrated by the green dots in 

Fig. 6. The estimating procedure shows excellent results but increasing deviations from the 

target is apparent at higher energy levels. This is because of the smaller amount of samples 

at a higher energy level. Eliminating the samples above level 2 will considerably improve 

the estimation. The next step is to fit a polynomial to the estimates to compute the potential 

energy U(x). Then from Eq. 9 the stiffness function may be calculated. 

 
Fig. 5. Kinetic 1/2

2x  and potential U(x) energy for a heavier damped system, 1% 

 

Fig. 6. Estimation of U(x) in zones of equal energy. The dots represents the average U(x) in each energy zone 
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3.2. DAMPING ESTIMATION 

Damping estimation is treated in two steps. The first step starts from the damping 

potential. The equation of motion is represented by Eq. (7) and Eq. (11) can be rewritten as 

,

0

( ,( )
ln

x xp x xH E

S C
 (13) 

where H(E) is the damping potential as described by Eq. (12). By estimating the 

probability density function from the system’s response, the damping potential can be 

calculated. This function, for a linear system is represented in Fig. (7). By fitting a linear 

polynomial to the experimental data, the ratio between damping potential and excitation 

intensity, S0 can be calculated. 

 

 
Fig. 7. Estimation of damping potential: a) - linear system and linear polynomial fitting, b) - nonlinear damping 

system, dry friction, and cubic polynomial fitting  

In the second step, the equivalent damping function, heq, in Eq. (11) is estimated from 

the covariance function at various energy levels according to 

1

2

4
ln

( ) ( )
eq

X
h

c E T E X
 (14) 

where c(E) is the participation factor in the covariance function, T(E) the natural 

period and X1 and X2 are the extreme values of the covariance function in the first period. 

21
2

1

( | ) exp ( ) cos( )x eq j

j

R E E h c E j  (15) 

For a linear system the covariance functions at different energy levels are shown in 

Fig. 8. Having calculated H(E)/S0 and heq the excitation intensity S0 can be estimated. For 

each energy level the extreme values (shown in Fig. 8 at X1 for the potential energy, and at 

X2 for kinetic energy) are extracted from the corresponding covariance functions and the 

a) b) 
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equivalent damping computed according to Eq. (14). The calculated values are represented 

by dots in Fig. 9. As the system is linear the damping is independent of energy level and 

therefore constant.  It can also be noticed in Fig. 8 that the natural period, and therefore the 

natural frequency, are constant for different energy levels. Each curve in Fig. 8 represents an 

energy level corresponding to the dots in Fig. 9. 

 

Fig. 8. Covariance function estimated at different energy levels 

 

 

Fig. 9. Estimation of the equivalent damping function, heq, from measured autocovariance functions 

After plotting the equivalent damping values, a line is fitted to represent the constant 

damping. As the energy level is increased, a larger deviation from the analytical value is 

apparent. 

4. IDENTIFICATION OF MACHINING SYSTEM ODPS 

The procedure developed in section 3 will be applied for the identification of the join 

characteristics of the machining system. Steel bars (C < 0.20%) with length of 1200 mm and 

initial diameter 42 mm were machined in longitudinal turning between tail and chuck at a 

cutting speed vc= 180 m/min, feed rate fr = 0.3 mm/rev and variable depth of cut (0.5 – 

3 mm). Cemented carbide inserts with 1.2 mm nose radius were used in all experiments. 

X2 

X1 
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The vibration signals were measured by a pre-polarized microphone and sample at 12.8 kHz 

sampling rate. In Fig. 10 an example of stable machining is presented, while Fig. 11 

illustrates an unstable machining. 

 

 

Fig. 10. Stable machining (D = 38 mm) 

 

 

Fig. 11. Unstable machining, chatter 

 

Fig. 12. Unstable process, as the tool approaches the centre of the bar heavy vibration sets on 
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Coming down to diameters below 34 mm, as the tool approaches centre of the bar, 

chatter vibration is generated. Fig.12 presents the time signal showing first a stable process 

then the chatter in the middle of the bar, then as the tool approaches the chuck, the system 

recovers stability. In Fig. 13, the unstable and stable signals are represented in frequency 

domain.  

 

Fig. 13. The stable and unstable signals in frequency domain 

4.1. OPERATIONAL STIFFNESS INDETIFICATION 

Following the procedure described in section 3, the overall stiffness of the machining 

system is estimated. For a stable process, Fig. 14 illustrates the potential function U(x). The 

function shows a soft nonlinear characteristic. After fitting to a quadratic polynomial 

function, the stiffness function can be extracted from Eq. (9). The blue line represents  

the theoretical linear system at the system’s natural frequency.  

 

Fig. 14. Stiffness estimation - stable machining 
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The estimation of the overall stiffness of the machining system entering unstable 

behaviour is presented in Fig. 15. The potential function U(x) and consequently the stiffness 

function show a hard nonlinear behaviour which is characteristic for self-excited vibration. 

The deviation from a nonlinear behaviour is apparent by comparing to the linear 

characteristic shown by the blue dotted line. As these results show, if the stiffness  

of a machining system enters the inelastic range of the material, or the process becomes 

nonlinear, or a combination of both and the degree-of-nonlinearity are large, using  

a linearization method for the nonlinear stiffness may yield large errors in response 

estimation. 

 

Fig. 15. Stiffness estimation - unstable machining 

4.2. OPERATIONAL DAMPING IDENTIFICATION 

Following the approach described in section 3, the damping potential and equivalent 

damping are estimated from the system’s response both in stable and unstable condition. 

However, the results are presented only for unstable machining system. 

 

Fig. 16. Estimation and fitting of damping potential for unstable machining 
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The estimation procedure starts with computation of the damping potential H(E) from 

the experimental computation of probability density function at different levels of energy. 

From Eq. (13), the function H(E) is computed and then fitted to a polynomial. As in the case 

of stiffness, the damping in an unstable machining system shows a nonlinear behaviour and 

a cubic polynomial is then employed. In the second step, the covariance function is 

calculated for gradually increasing levels of energy. Some of these functions are represented 

in Fig. 17. It is worth noticing that, as the stiffness is nonlinear, the natural period depends 

on the energy level. The same can be stated for the equivalent damping. A modified form  

of Eq. (14) is used to take into account the changes in the natural period. The total energy is 

calculated as a sum of the kinetic and potential energies. The kinetic energy is extracted 

from the derivative of the response while potential energy from an iterative procedure 

applied to the identified potential function U(x). 

 

Fig. 17. Covariance function calculated for various energy levels 

 

 

Fig. 18. Computation of equivalent damping function 
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5. ODP PARAMETRIC IDENTIFICATION 

In section 4, a non-parametric identification procedure has been used to estimate the 

ODPs from the response of the machining system in stable and unstable conditions. The 

main benefit of this approach is that the estimated dynamic parameters are extracted in 

operational conditions directly from the interaction between the elastic structure and the 

cutting process. Knowledge of ODP opens entire new opportunities for optimizing the 

machining system. Strategies for improving, if necessary, the system may be 

straightforward implemented by comparing different solutions. Non-parametric 

identification has however, the limitation that requires long sample sequences. In addition, 

as the non-parametric models developed in this paper are based on SDOF system, special 

treatment of data is required. Another issue is that this approach requires knowledge of the 

response probability distribution. 

In the remainder of this section, the identification technique based on parametric 

models is presented. Parametric models can be applied to any numbers of DOF and in their 

recursive implementation can take into account the nonlinear nature of the system.  

A parametric model is a special class of representation of a system, where the input in the 

model is driven by white noise processes and the model is described by rational system 

functions, including autoregressive (AR) (Burg, least square, Yule Walker, geometric 

lattice, instrumental variable), ARX (autoregressive with eXogeneous variables, iv4), 

moving average (MA), autoregressive-moving average (ARMA), Box Jenkins, Output Error 

models [42-44]. The process output of this class of models has power spectral density (PSD) 

that is entirely described in terms of model parameters and the variance of the white noise 

process.  

The response generated by a process can be identified in a parametric model. The 

model is a synthetic one since the parameters in the model do not have any physical 

meaning. It will later be shown how the synthetic model can be converted in a physical one. 

The modelling of a stationary time series as the output of a dynamic system whose input is 

white noise a(t), can be carried out in several ways. One way is to use the parsimonious 

parameterization which is employing ARMA(p,q) representation [34]. Given a time series 

of data X(t), the ARMA model is an identification technique for predicting future values in 

this series [35],[36]. The model consists of two parts, an autoregressive (AR) part and  

a moving average (MA) part [38]. The combined model is usually then referred to as the 

ARMA(p, q) model were p is the order of the autoregressive part and q is the order of the 

moving average part. The input excitation in an ARMA process is not observable but can be 

assumed to be random and broadband compared with the measured output sequence for the 

reasons explained above. In milling for instance the intermittent engagement of multi tooth 

cutters excites the structure with impulse like forces. The model for an ARMA process can 

be expressed as 

)()()( zUzHzY    (16) 

where Y(z), U(z) and H(z) are the z-transforms (the z-transform is the discrete-time 

counterpart to the Laplace transform for continuous-time systems) of the output sequence,  
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input  sequence  and  the  system  impulse  response (transfer function),  respectively,  and 
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where the bi and ai are coefficients of the polynomials of the MA part and AR part, 

respectively. As mentioned earlier, the ARMA model consists of two parts, an AR part and 

an MA part. If the polynomial of the AR part  1 the ARMA model represents a MA model.  

The properties of such models allow for an analysis of the frequency spectrum with deep 

nulls, but without any sharp peaks. If the polynomial of the MA part  1 the ARMA model 

represents an AR model. The properties of such models allow for an analysis of the 

frequency spectrum with sharp peaks, but without any deep troughs. Thus, the ARMA 

model can be used to represent spectra with both kinds of behaviour. Using Eqs. (16) and 

(17) the ARMA model can be expressed 
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5.1. RECURSIVE PARAMETERS IDENTIFICATION 

The model-based identification method used in this paper is based on the recursive 

prediction-error method (RPEM) [42]. As before, the model structure is based on  

a parametric process where the input to the model is driven by white noise processes and the 

model is described by a rational system function and represented by the recursive 

autoregressive moving average (RARMA) model structure. The process output of this 

model has the power spectral density (PSD) that is entirely described in terms of model 

parameters and the variance of the white noise process. By definition, a non-conservative 

mechanical system with positive damping is said to be dynamically stable, whereas one with 

negative damping is considered unstable. This gives a robust criterion for discrimination 

between forced and self-excited vibrations which is not related to de vibration amplitude 

criteria.  

Assuming that the machining system excited by a random excitation e(t) can be 

represented by an n degree of freedom nonlinear equation of motion  

( , ) ( )Mx Cx Kx g x x e t  (19) 

where M, C and K represent n x n mass, damping and stiffness matrices respectively; 

e(t) is a vector of external excitation. Matrices C and K contain both structural and process 

damping and stiffness respectively. The expressions ( ), ( ), ( )x t x t x t  are (nx1) vectors  

of displacement, velocity and acceleration for the n degrees of freedom system, and ( , )g x x

is a nonlinear function. The system of equations (19) can be recast in 
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( ) ( ) ( )z t F z f t  (20) 

where 

1

( ) 0
; ( )

( ) ( )
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1 1 1
F(z)=

( , )

x
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Let yj(k T), k = 0, 1, 2 …n be the discrete samples of the measurement response of 

the displacement of the j-mass. T is the sampling interval. Then the observations yj (k T) 

can be represented by an ARMA model described by Eq. (16). The measurement equation is 

then of the form 

                                       Yi = H(k t, Xj; ) + ek                                                                       (21) 

The purpose of RARMA is to recursively identify the join parameters  in Eq. (21) 

from the response measurements in the time domain 
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where k is the gradient of y. Thus, model parameter estimation refers to the recursive 

determination, for a given model structure, parameter vector  [a1, a2 … ap, b1, b2, … bq] 

and the residual variance σe
2
(t) at every sample time instant k = 1, 2, … n. The AR 

characteristic equation of (19) can be written [4] 

where j* is the complex conjugate of j. From Eq. (23) the operational damping, j 

and frequency j are recursively calculated at each time instant t  

p

i

n

j

jji itya

0 1

*))(()(         (23) 

2

*

*

12*

*

mod

tan4)ln(

)ln(
)(

jj

jj

jj

jj

j
 

     (24) 

2

*

*

12*
mod tan4)ln(

2

1
)(

jj

jj

jjj
T  

     (25) 



112  Mihai Nicolescu, Andreas Archenti 

 

One of the major benefits of implementing the damping criterion in RARMA is the 

fast tracking of the instantaneous ODP under actual machining. In industrial applications it 

is often the case that cutting conditions are changing due to variations in workpiece 

geometry, cutting parameters, clamping device position relative cutting position, and 

machine tool position etc. For instance, when end-milling the top plane of a cylinder block 

for car and truck engines, the cutting parameters are changing due to variations in cutting 

conditions such as position on cylinder block [46]. In such a case the position in respect to 

clamping devices is essential.  

 

Fig. 19. PSD of the vibration signal 

To verify the recursive parametric identification, a workpiece was prepared with slots 

and pockets (see Fig. 20). Between each section of slots and pockets sections with 

homogenous material are machined, enabling two inserts simultaneously to be engaged in 

workpiece. The chosen operational conditions are believed to highly affect the cutting 

stability as the discontinuity in the tooth passing frequency, caused by varying multiple 

entries each section, leads to a strong variability in the cutting operation. The response was 

measured by a microphone and a triaxial accelerometer. The microphone was placed inside 

the machine tool work area and the accelerometer was placed on the spindle casing at the 

location corresponding to the front bearings [42]. The variation in cutting condition can 

clearly be seen by studying the PSD (in waterfall representation) of the acquired 

microphone and accelerometer signals (see Fig. 19). The response amplitude corresponding 

to the frequency representing the forced vibrations is varying depending on where on the 

workpiece the cutting is performed. The forced vibration frequency is normally correlated to 

the cutting frequency of the system. In this experiment, due to holes and slots, the cutting 

frequency is varying depending on the position on the workpiece. Over the inhomogeneous 

sections, the cutting frequency increases. This can clearly be seen by studying the 

microphone signal and accelerometer signal in X-direction. When machining over 

homogeneous sections the cutting frequency decreases. Milling over the second 

inhomogeneous section of the workpiece leads to a change in cutting frequency (multiple 

entries each revolution). The amplitude of the PSD increases over the whole frequency 
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range particularly two vibration concentrations can be seen, 2 kHz and 3 kHz. At these 

frequencies two structural modes are located (identified with EMA). The RARMA-ODP 

algorithm identifies two dominant operational frequencies and related damping ratios. The 

first operational frequency (fop)1 is approximately 95 Hz, and relates to the workpiece-table 

system (verified by EMA). This frequency is mainly correlated to cutting of multiple tooth 

entries (due to slots and pockets). As chatter is generated close to a structural natural 

frequency the instability is likely to occur in the weakest mode or modes of the structure. 

Normally these modes can be related to machine tool structure such as tool, tool holder and 

spindle. Regenerative self-excited vibrations occurs on the second operational frequency 

(fop)2 which is approximately 990 Hz and is related to the tool-spindle system (verified with 

EMA). In this case, when the operational damping ratio (ξop)2 is locally decreasing to zero 

(or close to zero) then chatter occurs (verified by surface roughness analysis) due to 

regenerative effects (Figure 19). The model order was RARMA(4,3). 

 

 

Fig. 20. Recursive identification of ODP in a milling operation 

6. CONCLUSION 

The present paper considers the identification methods of the machining system. The 

paper gives an assessment, in the first section, of the nonlinearities encountered in the 

machine tool structure and the cutting process. The machining system can be completely 

analysed only in closed loop i.e. in operational conditions, since specially designed off-line 

experiments with controlled input, such as modal testing, give the response from only the 

open loop. Also, as the system’s parameters are nonlinear, they depend on the energy level. 
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In the subsequent sections, the application of parametric and nonparametric models for 

ODPs identification is described. Both methods are used in conditions where input 

excitation is unknown, which is the case of machining systems. The non-parametric 

identification approach is best suited in systems with low damping. The non-parametric 

identification technique provides possibility of estimating the departure from linearity  

of system parameters. The experimental results show that close to chatter the nonlinearity  

of the system increases. The non-parametric identification technique also provides the 

possibility of estimating ODPs at different energy levels as nonlinearity of the system 

requires. Identification procedure in the case of non-parametric technique follows three 

steps: (1) potential energy estimation, and fitting to a polynomial. Then the stiffness 

function is calculated from the derivative of the polynomial. (2) the damping potential is 

calculated from the response probability density function. (3) the equivalent damping is 

calculated for different levels of energy and fitted to a polynomial. From the polynomial and 

with knowledge of potential function the operational damping can be calculated. 

Simulations demonstrate very good results in stiffness estimation, especially for light 

damping. Damping estimates show a certain scattering effect especially at higher energy 

levels and for nonlinear systems. A longitudinal turning operation is used to demonstrate the 

capability to estimate ODPs both in stable and unstable systems.  

Regarding parametric identification, a recursive model is developed allowing real time 

identification of the ODPs. The ability of the recursive estimation to track fast changes in 

operation conditions is demonstrated in the case of a milling operation. A stable condition 

alternates with an unstable. There is a good correlation between the behaviour of the system 

and variations of ODPs. The ODP values are extracted from an ARMA model’s parameters. 

There is a compromise however between the accuracy of the identified parameters and the 

execution speed. Parametric identification is a well suited technique for detecting impending 

chatter since the criteria for detection is based on the damping variation rather than the 

relative change in the amplitude of vibration. This also gives a robust criteria for 

discrimination between forced and chatter vibration. The distinction is important since 

chatter represents an inherent unstable system and forced vibration represents a stable 

system that could work closed to one of the natural frequencies of the system. Therefore, the 

ways avoiding these phenomena are different. The recursive parametric identification 

method can be straightforward implemented in various approaches for the control of  

a machining system. 
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