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The calculations of machining stability limit currently known do not provide a precise prediction of chatter-free 
cutting conditions. The inaccuracy is probably caused by mathematical models of dynamic forces acting on the 
cutting process during unstable machining. These models need to be modified. A new analysis of experimental 
data measured by one of the authors, M. Poláček, in the 1968-1974 period, forecasted an existence of several 
dynamic forces, which are mutually phase-shifted, thus complex. This fact has not been thoroughly investigated 
previously. As the assumed forces cannot be calculated from any equations, they must be identified 
experimentally. This research paper proposes a theoretical method of an experimental identification of these 
forces. The new model is intended to be used in the future for the development of a more accurate calculation 
of stability diagram. 

11..  IINNTTRROODDUUCCTTIIOONN  

Self-excited vibrations arise under certain conditions when machining. The oscillations 
arise when a flexible vibrating system machine-tool-workpiece deflects from its equilibrium 
position by a random impulse, for example by the cutting tool running up into the cut. 
Subsequently, the oscillating tool produces wavy surface. The surface waves and tool 
oscillations have the same period and they are phase-shifted. The result is the emergence  
of a periodically variable component of the cutting forces, which in a feedback loop also 
acts on the development of self-excited vibrations and produces oscillations with increasing 
amplitude. In a short period of time the amplitude of the oscillations stabilizes at a certain 
level. 

There have been many attempts to calculate the stability limit of such an oscillating 
system. The first applicable calculation was developed in the 1950s for turning [10] and 
later published in [4]. According to Poláček´s theory, the linear model of the dynamic 
components of the cutting forces was directly dependent on the variable thickness of the 
chip. The constant of proportionality was static specific cutting force also called specific 
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cutting resistance. Width of chip was chosen as a measure of the stability limit. The linear 
model of dynamic forces led to a simple condition for the limit width of chip on the stability 
boundary. The relationship is successfully used today to solve the problems of instability  
of machine tool structure. In this case, the dominant role is played by the modal analysis  
of the machine structure. The linear model is, however, not completely suitable for the 
prediction of chatter-free cutting conditions. Deviations of the calculation are the largest in 
the area of lower cutting speed, which is today a major shortcoming in the machining  
of hard-to-machine materials such as titanium and nickel alloys [20].  

Even in the area of higher cutting speed the accuracy of the prediction of stable cutting 
conditions is not, in some cases, satisfactory. Attempts to refine the prediction have been 
trying to remove these shortcomings [1]. However, the models of dynamic cutting forces 
used still hold to the premise of the original linear model, i.e. that when unstable machining 
comes into existence, one dynamic component of cutting forces is generated as a result  
of changing the thickness of the chips periodically. 

A significant attempt to improve the stability prediction was the cooperative research 
of dynamic cutting force coefficients reviewed in [18] and [9]. In this investigation only one 
dynamic cutting force was considered. The force was decomposed into two components,  
a so-called direct component and a cross component. Both components consisted of the two 
forces generated by so-called inner and outer modulation. The research showed that the 
forces are complex and their phases depend on cutting speed. Unfortunately, the results  
of measurements of dynamic complex coefficients and their corresponding forces operating 
during unstable machining suffered considerable variance of measured data. According to 
the authors, it was due to insufficient monitoring of tool wear. Repeated measurements, 
published in [6],[17] and [19], confirmed this assumption and reduced the variance to some 
extent.  

Although all these works confirmed the complexity of the forces, no conclusions 
regarding stability calculation were drawn from this fact, except a very simplified stability 
calculation. Under very specific conditions specified in [18], it is possible to deduce the 
following simplified relationship for the stability limit: 
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where: k and ξ are static stiffness and damping ratio of the single degree of freedom 
vibration system, Re(Kdi) and Re(Kci) are the real parts of dynamic cutting force coefficients 
(DCFC) for the direct and cross force. The direct and cross force correspond to Fa and Fb 
used in this paper. Im(Kdi) and Im(Kci) are the imaginary parts of the same coefficients  
(Fig. 1). 

Dependences of measured coefficient components of inner modulation on cutting 
speed, as presented by Tlusty [18], are shown in Fig.1. Using these data, and for certain 
selected values k and ξ (these values do not influence the curve shape), we are able to 
calculate the dependence of the stability limit on cutting speed in Fig. 2., which is the bowl-
shaped curve. This example is very specific and cannot be generalised for other cases, but 
the importance of it lies in the specific shape of the stability curve. 
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Fig. 1. Real and imaginary components of dynamic cutting force coefficients for turning. 

Data compiled from [18] and [9] and averaged. Material: steel 1045 

 

 
Fig. 2. Limit of stability for turning at lower cutting speeds calculated with the use of data published in [18] and [9] 

 
 
The same bowl-shape was measured when turning and published in [5],[7] and [18] as 

well as in other works reviewed in [2] (see Fig. 3). The reason for the bowl-shaped stability 
curve has not been investigated until now but there is certainly a relationship to the 
dependence of complex dynamic cutting forces on cutting speed. There is also a great 
influence of tool geometry which was investigated in [8] and in [2]. Based on the above-
mentioned review, we can say and deduce that:  
a) until now it has not been proved to satisfaction how the shape of a stability diagram can 

be influenced by the complex dynamic forces, 
b) as the dynamic forces are complex, they must be considered as individual forces, not as 

the geometrical components of one dynamic force, and must be treated only within  
a complex (Gauss) plain, 

c) these forces act at a cutting tool edge, 
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d) each such a force has its magnitude, direction and phase shift, relative to a periodic 
deflection of the tool, 

e) each force causes a periodic deflection of a considered vibrating system, which 
participates in a resulting stability limit. 

 

 
Fig. 3. Stability curves. Data compiled after [9],[7] and [5] 

This paper firstly presents results of a new analysis of older data measured by one  
of the authors. Secondly, it suggests a new model of cutting forces, including a theory  
of their experimental identification. Finally, a prepared experiment is described briefly. 

22..  NNAATTUURREE  OOFF  TTHHEE  PPRROOBBLLEEMM  

The paper focuses on a method of identification of dynamic complex forces acting 
between the tool and the workpiece under unstable orthogonal machining using a single-
edge cutting tool. The data obtained from the former tests published in [6],[11],[12],[14], 
[15],[16],[17] and [19], have been newly treated. The analysis has shown that there are very 
probably several dynamic forces of various sizes, orientations and phase shifting, i.e. 
complex forces, acting on the cutting edge, [2]. These forces are dependent on the 
parameters of the cutting process. An analytical solution of this task is not possible due to 
the complexity of this case. Therefore, an experimental identification of the forces will be 
applied. On this basis, a new model of dynamic forces will be formulated, taking into 
account their complex character. It is assumed that this model will refine the calculation  
of the stability limit. The accuracy of the stability limit calculation depends on conformity 
of the force model and natural reality existing during unstable machining.  

The complexity of the task lies in the fact that the forces are generally complex forces 
of different sizes, directions and phases. Individual forces cannot be directly measured. It is, 
however, possible to measure the summation of the individual forces projected in two 
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mutually perpendicular directions. The projected summation is called the total forces in the 
text of the paper. The total forces are later decomposed into the projections  
of individual forces using a special method described below. The assumed dynamic forces 
will be determined experimentally in unstable machining. Unstable cutting conditions will 
be simulated by machining using a periodically excited cutting tool. A test device has been 
designed so that the tool and its flexible fastening to the machine form a single vibrating 
system with one degree of freedom. The mechanism of the machine on the side of the 
workpiece must be stiff enough to suppress machine vibration, including torsional vibration 
of a spindle drive.  

33..  MMEETTHHOODD  OOFF  SSOOLLUUTTIIOONN  

The method of the dynamic force identification is based on Poláček´s previous work 
[13]. But the actual method considers some new findings of the authors obtained from the 
cited research reports of VÚOSO. As stated above, several dynamic forces, generally 
oblique, of different directions, sizes and phases operate during unstable machining. 
Generally, the vectors of the forces are three-dimensional, but the task will be simplified to 
a planar task. For this reason, the tool will cut a thin-walled tube in the parallel direction to 
the axis of the tube rotation (face turning). The width of the tool insert will be larger than 
the thickness of the tube wall. Thus the machining will be orthogonal without any radial 
force. We specify the total forces as Fa and Fb, where indices “a” and “b” denote the 
mutually orthogonal coordinate axes. The “a” axis is perpendicular to the direction  
of the axis of the machined surface. The direction of the “b” axis is the same as the direction 
of the cutting speed. See Fig. 4. 

 

 

Fig. 4. The schema of the workpiece, tool and total force Fa and Fb 

Each of the two forces Fa and Fb is given by the sum of the four components of the 
phasors Fa

i, Fa
o, Fa

D and Fa
W, and the phasors Fb

i, Fb
o, Fb

D and Fb
W, which are the 

projections of the dynamic forces in the direction of axes "a" and "b". These projections  
of the forces generally have a different phase. 
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Furthermore, we define the individual forces closer and explain the proposed method 
of their identification. For simplicity, we omit the indexes „a“ and „b“. The method  
of identification for both directions "a" and "b" is the same. 

The first force Fi is a periodic cutting force. The index "i" refers to „inner 
modulation“, which means that the cutting force is generated in machining with the 
oscillating tool, whose cutting edge is located below the surface of the workpiece material 
(thus inner modulation). The second cutting force Fo  is also periodic one. The index "o" 
stands for "outer modulation", which means that the cutting force originates in the removing 
of surface waves on the workpiece surface (thus outer modulation). Defining the force FD, 
we accept at this moment the hypothesis of „process damping“ for the force. The force FW is 
the damping force that depends on the wear of tool flank. Vectors of all the mentioned 
forces can be depicted in the complex plane along with the vector of the tool vibration Yi, 
which lies on the real axis. The vector of surface waves Yo is phase-shifted against Yi by a 
phase of ε. See Fig. 5. The following relationship applies: 
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where the stability limit is defined by the equality of amplitudes of the waves and tool 
oscillations. The indexes "i" and "o" indicate once again the "inner" and "outer" modulation. 
The phase ε can vary in the range of 0° to 360°. The reference signal for phase measurement 
of forces and waves is the oscillation of the tool Yi.  

Mathematical model suggests the forces Fi and Fo in the form: 
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In the relationships (4) the expressions Ki·e
jα and Ko·e

jβ are complex coefficients, b is 
the width of chip, Yi and Yo is the amplitude of tool oscillation and amplitude of surface 
waves respectively. Damping forces have the following comprehensive form in the 
proposed model: 
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In equations (4) and (5) the indices α, β, γ, δ denote the phases of individual forces 
against the tool oscillations Yi in direction “a“. Generally, these phases will be different for 
the direction “b“; thus later we must use other symbols φ, σ, ς, ξ to denote them. It can be 
assumed that these phases are dependent on the tool geometry and on the cutting edge wear. 
It is obvious from the equations (4) that the vector of force Fi does not change its position 

(3) 

(5) 
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depending on the phase ε. The force of Fi has the size KbYi and phase α in the complex 
plane. On the contrary, the force Fo has phase (β+ε) against Yi, so that when we change ε, 
the force Fo rotates in the complex plane. In the vector sum of the forces (Fi+Fo), the Fo 
rotates around the endpoint of the vector Fi and its endpoint moves around the circle. In 
general, this circle lies in any quadrant of the complex plane. Its location depends on the 
phase α of the force Fi. See Fig. 5. 

 
Fig. 5. View of the forces Fi, Fo and their summation (Fi+Fo) in the complex plane for a particular phase shift β+ε  

of the force Fo 

As proposed in the equation (2), the forces FD and FW influenced the overall forces Fa 
and Fb. As a result of the rotation of the phasor Fo, the overall forces Fa and Fb respond to  
a change of the phase ε by turning the force phasor in relation to the reference tool 
oscillations, i.e. in relation to the real axis of the complex plane. A gradual change in ε in 
the range of 0° to 360° thus causes the movement of the endpoint Fa and Fb, on a circle. 
This generates a sufficient number of measured points that can be fitted by a circle using the 
method of least squares and provides the centre and the radius of this circle.  

To identify the components of the total forces, their properties will be used. We 
assume that the phase of the forces FD and FW are not dependent on the phase ε. Thus they 
will not affect the shape of the measured circle. Assuming for a moment that FD and FW are 
zero, the magnitude of Fi defines the distance of the centre S of the circle from the 
beginning of the complex plane and the magnitude of the force Fo defines the radius of the 
circle. See the red vectors Fi, Fo, (Fi+Fo) and circle in Fig. 6. We presume that the force FD 
can be eliminated by reducing the steepness of the waves Yo(t), which can take place either 
at higher speeds or lower frequencies of tool excitation. The amplitude of the tool vibrations 
can be also used to influence the steepness of the waves. The force FW can be eliminated by 
using a sharp tool. On the contrary, the force of FD will be greatest at low speeds. The force 
FW will be the greatest at higher, but defined, tool wear. 

Substituting the equations (4) into the equation (2) and neglecting the force Fw we 
obtain (for the direction “a“): 
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which can be written: 

( )o i DF F F F= + + .         (6) 

These equations are depicted in Fig. 6 by the green vectors and circle. Obviously the 
vector sum Fi+FD defines the new position of the circle centre and the rotating vector Fo 
creates the green circle of the same radius as the previous red one. Thus the unknown force 
FD can be identified through measuring both the red and green circles and fitting their 
centres. The vector difference of these centres defines FD. Adding FW, the analogical 
procedure can be applied. It is depicted by the blue vectors and circle in Fig. 6. This 
procedure applies to both directions “a” and “b”.  

The method assumes that the differences between the phasors Fa or Fb, measured 
under different cutting conditions will identify the forces Fi, Fo, FD and FW with sufficient 
accuracy. A background of the proposed method can be found in [3]. 

 
Fig. 6. Identification of the forces FD and FW for a particular phase shift β+ε of the force Fo. 

To calculate the stability limit, the total forces Fa and Fb may be used. However, the 
result would be valid only for those cutting conditions under which these forces have been 
measured. In order to calculate the stability limit useful for a certain range of cutting 
conditions, it is necessary to identify all forces Fa

i, F
a

o, F
a

D and Fa
W, and also forces Fb

i, F
b

o, 
Fb

D and Fb
W and their dependencies on the variable cutting conditions. 

44..  PPRRIINNCCIIPPLLEE  OOFF  EEXXPPEERRIIMMEENNTT  

The experiment described below does not validate any model with reality. A validation 
in this sense cannot be done until we have identified all true forces acting in an unstable cut. 
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Based on this true force model, a stability diagram can be calculated and this can be 
validated with reality. The prepared experiment, described in the paper, will serve only to 
the identification of true forces.   

To identify the dynamic cutting forces it is necessary to set the phase ε step by step. 
Naturally-induced self-excited vibration does not allow the setting up of the phase. 
Therefore, an artificial excitation of the cutting tool will be applied, so that the tool can 
create the waves Yo(t) on the workpiece. The phase ε will be set by change of wave length, 
which is given by the ratio of the frequency of workpiece rotation to the frequency of the 
tool excitation. 

 

Fig. 7. Scheme of the measuring fixture 

In order to create waves on the machined surface, tool excitation in a direction 
perpendicular to the machined surface will be used. The excitation will be repeated for 
various values of phase ε or frequencies of the actuator exciting signal so that the tip  
of vector Fa or Fb will describe a circle around a fixed centre S in complex plane. 

The workpiece will have the shape of a thick-walled tube and will be face machined in 
the direction of the workpiece larger stiffness. The vibrating system will be formed by the 
tool. It must be ensured that such a system is able to vibrate only in the direction of the “a” 
axis, while it is very stiff in the direction of the “b” axis. The direction of tool vibration will 
be the same as the direction of the workpiece rotational axis. The principle scheme of the 
equipment can be seen in Fig. 7. It is essential to measure both the magnitude and the phase 
of Fa and Fb relative to excited tool vibration Yi. Tool vibration Yi needs to be scanned 
during machining.  

A tool will be mounted in a flexible fixture. The tool will move lengthwise at a speed 
that will be determined by the feed per revolution fR and it will machine the face of the tube 
clamped in a chuck. The tube will rotate at constant speed, in order to maintain constant 
cutting speed throughout the test. The thickness of the walls of the tube will determine the 
width of the chips, which will also remain unchanged throughout the test. Let us bear in 
mind that the feed per revolution defines the static components of cutting forces. The tool 
will be excited by means of a force shaker with a chosen frequency and amplitude (f, Yi) 
during its feed. Thereby the created wavy surface (Yo) will be cut off by the vibrating tool 
during the following revolution. This process will produce a variable depth of chip (Yo-Yi). 
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This depth will generate dynamic cutting force Fa and Fb, which will be recorded by proper 
force sensors. Waves on the workpiece surface will be shifted by a phase angle ε, against 
tool vibration Yi. The phase will be determined by the ratio of the tool oscillation frequency 
and cutting speed. For each longitudinal crossing of the tool the ratio will be fixed. 
Throughout the test, the frequency of the tool oscillation will be gradually changed so that 
the phase shift ε between Yi(t) and Yo(t) will vary in the range of 0° to 360°. 

For each chosen value of cutting speed and each frequency the measured amplitude 
and phase of the forces Fa and Fb will be drawn into the complex plane. The above-
mentioned analysis of the results obtained (Fig. 3), will allow us to specify the dynamic 
coefficients of cutting forces. The same procedure will be repeated for the next cutting 
speed. Thus it will be possible to observe the behaviour of the force coefficients depending 
on cutting speed.  

55..  SSUUMMMMAARRYY  

The paper proposes a method of experimental identification of the complex forces that 
act during unstable orthogonal turning. The forces are considered as individual forces, not 
components of one force. The method assumes that at least four forces must be identified: 
the forces of inner and outer modulation, process damping force and damping force 
generated in the cut due to tool flank wear. All the forces are assumed to be complex and  
of different size and direction. This approach has not been investigated yet. The existing 
stability calculations consider only one dynamic cutting force decomposed into two 
orthogonal components. On the one hand, the assumption of the complex forces complicates 
the identification, but on the other hand it contributes very probably to an improvement  
of the stability limit prediction. The forces have to be identified experimentally, under the 
cutting conditions variable in proper ranges. The experimental validation of the proposed 
theory and method of the complex force identification will be a subject of a future 
investigation. 
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