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A METHOD OF IDENTIFICATION OF COMPLEX CUTTING FORCESACTING
IN UNSTABLE CUTTING PROCESS

The calculations of machining stability limit cuntéy known do not provide a precise prediction bétter-free
cutting conditions. The inaccuracy is probably eauby mathematical models of dynamic forces aatimghe
cutting process during unstable machining. Thesdetsoneed to be modified. A new analysis of expenital
data measured by one of the authors, M. d&dain the 1968-1974 period, forecasted an existarficeveral
dynamic forces, which are mutually phase-shiftadstcomplex. This fact has not been thoroughlystigated
previously. As the assumed forces cannot be cakdildrom any equations, they must be identified
experimentally. This research paper proposes adtieal method of an experimental identificationtbése
forces. The new model is intended to be used irfuthee for the development of a more accurateutalion

of stability diagram.

1. INTRODUCTION

Self-excited vibrations arise under certain coondsiwhen machining. The oscillations
arise when a flexible vibrating system machine-twotkpiece deflects from its equilibrium
position by a random impulse, for example by thé#img tool running up into the cut.
Subsequently, the oscillating tool produces wavifase. The surface waves and tool
oscillations have the same period and they areepslaifted. The result is the emergence
of a periodically variable component of the cuttiogces, which in a feedback loop also
acts on the development of self-excited vibratiand produces oscillations with increasing
amplitude. In a short period of time the amplitwdehe oscillations stabilizes at a certain
level.

There have been many attempts to calculate thditdionit of such an oscillating
system. The first applicable calculation was depetbin the 1950s for turning [10] and
later published in [4]. According to PdEK's theory, the linear model of the dynamic
components of the cutting forces was directly delpen on the variable thickness of the
chip. The constant of proportionality was statieafic cutting force also called specific
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cutting resistance. Width of chip was chosen asasure of the stability limit. The linear
model of dynamic forces led to a simple conditionthe limit width of chip on the stability
boundary. The relationship is successfully usedyadw solve the problems of instability
of machine tool structure. In this case, the dominale is played by the modal analysis
of the machine structure. The linear model is, haxenot completely suitable for the
prediction of chatter-free cutting conditions. Dewons of the calculation are the largest in
the area of lower cutting speed, which is today gomshortcoming in the machining
of hard-to-machine materials such as titanium ackiehalloys [20].

Even in the area of higher cutting speed the acgusithe prediction of stable cutting
conditions is not, in some cases, satisfactoryerfits to refine the prediction have been
trying to remove these shortcomings [1]. Howevke models of dynamic cutting forces
used still hold to the premise of the original Anenodel, i.e. that when unstable machining
comes into existence, one dynamic component ofngufbrces is generated as a result
of changing the thickness of the chips periodically

A significant attempt to improve the stability prettbn wasthe cooperative research
of dynamic cutting force coefficients reviewed #8] and [9]. In this investigation only one
dynamic cutting force was considered. The force dasomposed into two components,
a so-called direct component and a cross compoBeitt. components consisted of the two
forces generated by so-called inner and outer natidul The research showed that the
forces are complex and their phases depend omguspeed. Unfortunately, the results
of measurements of dynamic complex coefficients thed corresponding forces operating
during unstable machining suffered considerabléamae of measured data. According to
the authors, it was due to insufficient monitoriofytool wear. Repeated measurements,
published in [6],[17] and [19], confirmed this asgution and reduced the variance to some
extent.

Although all these works confirmed the complexitly tbe forces, no conclusions
regarding stability calculation were drawn fromstiiact, except a very simplified stability
calculation. Under very specific conditions spesfiin [18], it is possible to deduce the
following simplified relationship for the stabilitymit:

_ 4ké
P = RelK, )+ RAK, ) - Im(K, )-Im(K, )} @)

where: k and ¢ are static stiffness and damping ratio of the Isirdegree of freedom
vibration system, R ) and R€K) are the real parts of dynamic cutting force coefhts
(DCFC) for the direct and cross force. The direud aross force correspond 8 and F”
used in this paper. If{g) and In(K) are the imaginary parts of the same coefficients
(Fig. 1).

Dependences of measured coefficient componentsadrimodulation on cutting
speed, as presented by Tlusty [18], are shown gnlFiJsing these data, and for certain
selected valuek and ¢ (these values do not influence the curve shape)awe able to
calculate the dependence of the stability limitcatting speed in Fig. 2., which is the bowl-
shaped curve. This example is very specific anchatthe generalised for other cases, but
the importance of it lies in the specific shapehef stability curve.
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Fig. 1. Real and imaginary components of dynamitirgiforce coefficients for turning.
Data compiled from [18] and [9] and averaged. Matesteel 1045
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Fig. 2. Limit of stability for turning at lower ctimg speeds calculated with the use of data puadish [18] and [9]

The same bowl-shape was measured when turninguisiped in [5],[7] and [18] as
well as in other works reviewed in [2] (see Fig. Bhe reason for the bowl-shaped stability
curve has not been investigated until now but thereertainly a relationship to the
dependence of complex dynamic cutting forces otingutspeed. There is also a great
influence of tool geometry which was investigatad8] and in [2]. Based on the above-
mentioned review, we can say and deduce that:

a) until now it has not been proved to satisfactiow llee shape of a stability diagram can
be influenced by the complex dynamic forces,

b) as the dynamic forces are complex, they must bsidered as individual forces, not as
the geometrical components of one dynamic force,maunst be treated only within
a complex (Gauss) plain,

c) these forces act at a cutting tool edge,
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d) each such a force has its magnitude, directiorpfiage shift, relative to a periodic
deflection of the tool,

e) each force causes a periodic deflection of a censdlvibrating system, which
participates in a resulting stability limit.
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Fig. 3. Stability curves. Data compiled after [9],fnd [5]

This paper firstly presents results of a new amslg$ older data measured by one
of the authors. Secondly, it suggests a new mofi@utiing forces, including a theory
of their experimental identification. Finally, agmared experiment is described briefly.

2. NATURE OF THE PROBLEM

The paper focuses on a method of identificatiordyriamic complex forces acting
between the tool and the workpiece under unstattfeogonal machining using a single-
edge cutting tool. The data obtained from the fartests published in [6],[11],[12],[14],
[15],[16],[17] and [19], have been newly treatetieTanalysis has shown that there are very
probably several dynamic forces of various sizesentations and phase shifting, i.e.
complex forces, acting on the cutting edge, [2].eSéh forces are dependent on the
parameters of the cutting process. An analytichltem of this task is not possible due to
the complexity of this case. Therefore, an expemntaeidentification of the forces will be
applied. On this basis, a new model of dynamic dsrwill be formulated, taking into
account their complex character. It is assumed ttiiatmodel will refine the calculation
of the stability limit. The accuracy of the statyiliimit calculation depends on conformity
of the force model and natural reality existingidgrunstable machining.

The complexity of the task lies in the fact that forces are generally complex forces
of different sizes, directions and phadaslividual forces cannot be directly measured. It is,
however, possible to measure the summation of the individual forces projected in two
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mutually perpendicular directions. The projected summation is called the total foioethe
text of the paper. The total forces are later degummsed into the projections
of individual forces using a special method desdibelow. The assumed dynamic forces
will be determined experimentally in unstable maaty. Unstable cutting conditions will
be simulated by machining using a periodically #&dticutting tool. A test device has been
designed so that the tool and its flexible fastgrim the machine form a single vibrating
system with one degree of freedom. The mechanisithe@fmachine on the side of the
workpiece must be stiff enough to suppress machibmation, including torsional vibration
of a spindle drive.

3. METHOD OF SOLUTION

The method of the dynamic force identification e&séd on Pol&k’s previous work
[13]. But the actual method considers some newirigl of the authors obtained from the
cited research reports of VUOSO. As stated aboeeeral dynamic forces, generally
oblique, of different directions, sizes and phasg@erate during unstable machining.
Generally, the vectors of the forces are three-dsimnal, but the task will be simplified to
a planar task. For this reason, the tool will ctihia-walled tube in the parallel direction to
the axis of the tube rotation (face turning). Thetiv of the tool insert will be larger than
the thickness of the tube wall. Thus the machiniild) be orthogonal without any radial
force. We specify the total forces & and F®, where indices & and “b” denote the
mutually orthogonal coordinate axes. Tha' “axis is perpendicular to the direction
of the axis of the machined surface. The directibthe ‘b” axis is the same as the direction
of the cutting speed. See Fig. 4.
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Fig. 4. The schema of the workpiece, tool and titale P and P

Each of the two forceB® andF® is given by the sum of the four components of the
phasorsF&, F3, F% and F%,, and the phasor§®, F°%, F° and F%, which are the
projections of the dynamic forces in the directmnaxes"a" and"b". These projections
of the forces generally have a different phase.
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Fe=FR*+F +FS+F,
FP=F’+F +F +Fy 2)

Furthermore, we define the individual forces cloged explain the proposed method
of their identification. For simplicity, we omit ¢hindexes ,a“ and by'. The method
of identification for both directionsa” and 'b" is the same.

The first force F; is a periodic cutting force. The index" "refers to ,inner
modulation”, which means that the cutting force generated in machining with the
oscillating tool, whose cutting edge is locatedolbethe surface of the workpiece material
(thus inner modulation). The second cutting foFgeis also periodic one. The index™
stands for "outer modulation”, which means thatdiiing force originates in the removing
of surface waves on the workpiece surface (thusranbdulation). Defining the fordep,
we accept at this moment the hypothesis of ,prodassping” for the force. The fordgy is
the damping force that depends on the wear of flaok. Vectors of all the mentioned
forces can be depicted in the complex plane alorig the vector of the tool vibratioM;,
which lies on the real axis. The vector of surfa@esyY, is phase-shifted againsgt by a
phase ot. See Fig. 5. The following relationship applies:

— j€

Yo = L (3)
Yol =[]
where the stability limit is defined by the equalidf amplitudes of the waves and tool
oscillations. The indexes™and '0" indicate once again the "inner" and "outer" madioh.
The phase can vary in the range of 0° to 360°. The referesigeal for phase measurement
of forces and waves is the oscillation of the tgol
Mathematical model suggests the forEgandF, in the form:

F =K & Db,
F =K, @7 DY, =K, &7 DY @° =K, &" DY, 4)

In the relationships (4) the expressidgs=?” andK,-€” are complex coefficientdy is
the width of chip,Y; andY, is the amplitude of tool oscillation and amplitudiesurface
waves respectively. Damping forces have the fol@wicomprehensive form in the
proposed model:

R =|F| &
Fu = |F| &

(5)

In equations (4) and (5) the indicesp, y, 0 denote the phases of individual forces
against the tool oscillationg in direction ‘a“. Generally, these phases will be different for
the direction b“; thus later we must use other symbglss, ¢, £ to denote them. It can be
assumed that these phases are dependent on tlgetmoetry and on the cutting edge wear.
It is obvious from the equations (4) that the vecibforce F; does not change its position
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depending on the phase The force ofF; has the siz&kbY; and phase: in the complex
plane. On the contrary, the forég has phaseffe) againsty;, so that when we change
the forceF, rotates in the complex plane. In the vector sunthefforces i+F.), the F,
rotates around the endpoint of the ved¥mland its endpoint moves around the circle. In
general, this circle lies in any quadrant of thenptex plane. Its location depends on the
phasen of the forceF;. See Fig. 5.
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Fig. 5. View of the forces;FF, and their summation (F=,) in the complex plane for a particular phase $hi#t
of the force §

As proposed in the equation (2), the forEgsandF,y influenced the overall forcds’
andF°. As a result of the rotation of the phasgr the overall force§® and FP respond to
a change of the phaseby turning the force phasor in relation to theerehce tool
oscillations, i.e. in relation to the real axistbé complex plane. A gradual change:im
the range of 0° to 360° thus causes the movemetiteondpoinF® andF°, on a circle.
This generates a sufficient number of measuredgtivat can be fitted by a circle using the
method of least squares and provides the centrénan@dius of this circle.

To identify the components of the total forces,irth@operties will be used. We
assume that the phase of the foregsaandF,y are not dependent on the phas&hus they
will not affect the shape of the measured circlss#ning for a moment th&at andF, are
zero, the magnitude of; defines the distance of the centseof the circle from the
beginning of the complex plane and the magnitudéhefforceF, defines the radius of the
circle. See the red vectors F,, (Fi+F,) and circle in Fig. 6. We presume that the fdfge
can be eliminated by reducing the steepness oivéhwesY,(t), which can take place either
at higher speeds or lower frequencies of tool exom. The amplitude of the tool vibrations
can be also used to influence the steepness ofdlies. The forc€&,y can be eliminated by
using a sharp tool. On the contrary, the forcé&®fvill be greatest at low speeds. The force
Fw will be the greatest at higher, but defined, wwehr.

Substituting the equations (4) into the equationd@d neglecting the forcg, we
obtain (for the direction “a):

F =K, @ DY, + (K, [ DY, +|F| ")
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which can be written:

F=F+(F+F) (6)

These equations are depicted in Fig. 6 by the gveetors and circle. Obviously the
vector sumF+Fp defines the new position of the circle centre amal rotating vectof,
creates the green circle of the same radius agréwous red one. Thus the unknown force
Fp can be identified through measuring both the red green circles and fitting their
centres. The vector difference of these centremmeef,. Adding Fy, the analogical
procedure can be applied. It is depicted by thee blactors and circle in Fig. 6. This
procedure applies to both directioras and “b”.

The method assumes that the differences betweemprthsorsF? or F°, measured
under different cutting conditions will identify éhforceskF;, F,, Fp andFy with sufficient
accuracy. A background of the proposed method edound in [3].
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Fig. 6. Identification of the forces;Fand ky for a particular phase shfit¢ of the force k.

To calculate the stability limit, the total forcE8 andF° may be used. However, the
result would be valid only for those cutting comatis under which these forces have been
measured. In order to calculate the stability limseful for a certain range of cutting
conditions, it is necessary to identify all ford&s F2,, F3; andF3,, and also forceg®, F>,

F°; andF®, and their dependencies on the variable cuttinglitioms.

4. PRINCIPLE OF EXPERIMENT

The experiment described below does not validagenazdel with reality. A validation
in this sense cannot be done until we have idedtiill true forces acting in an unstable cut.
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Based on this true force model, a stability diagream be calculated and this can be
validated with reality. The prepared experimensadiéed in the paper, will serve only to
the identification of true forces.

To identify the dynamic cutting forces it is nea@aysto set the phasestep by step.
Naturally-induced self-excited vibration does ndlow the setting up of the phase.
Therefore, an artificial excitation of the cuttingol will be applied, so that the tool can
create the waveg,(t) on the workpiece. The phasevill be set by change of wave length,
which is given by the ratio of the frequency of Waece rotation to the frequency of the
tool excitation.

THICK-WALLED TUBE  SENSOR OF FORCE (F?,F°)

TOOL SHAKER
WAVY RPM A,

SURFACE
(Yo)

>F(Y)
e 1
o f

=

CHUCK

FLEXIBLE FIXTURE ACCELEROMETER (Y))

Fig. 7. Scheme of the measuring fixture

In order to create waves on the machined surfama, éxcitation in a direction
perpendicular to the machined surface will be uddte excitation will be repeated for
various values of phase or frequencies of the actuator exciting signaltisat the tip
of vectorF? or F® will describe a circle around a fixed centre $dmplex plane.

The workpiece will have the shape of a thick-waliglde and will be face machined in
the direction of the workpiece larger stiffnesse®ibrating system will be formed by the
tool. It must be ensured that such a system istablérate only in the direction of the&™
axis, while it is very stiff in the direction oféi'b” axis. The direction of tool vibration will
be the same as the direction of the workpieceiootak axis. The principle scheme of the
equipment can be seen in Fig. 7. It is essentialgasure both the magnitude and the phase
of F2 and F® relative to excited tool vibratio;. Tool vibrationV; needs to be scanned
during machining.

A tool will be mounted in a flexible fixture. Thedl will move lengthwise at a speed
that will be determined by the feed per revolutigand it will machine the face of the tube
clamped in a chuck. The tube will rotate at conssgpeed, in order to maintain constant
cutting speed throughout the test. The thickneghefwalls of the tube will determine the
width of the chips, which will also remain unchadg@roughout the test. Let us bear in
mind that the feed per revolution defines the statimponents of cutting forces. The tool
will be excited by means of a force shaker withhasen frequency and amplitude Y;)
during its feed. Thereby the created wavy surfaggwill be cut off by the vibrating tool
during the following revolution. This process wpitoduce a variable depth of chig,{Y;).
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This depth will generate dynamic cutting fofeeandF®, which will be recorded by proper
force sensors. Waves on the workpiece surfacebeilshifted by a phase angleagainst
tool vibrationY;. The phase will be determined by the ratio ofttha oscillation frequency
and cutting speed. For each longitudinal crossihghe tool the ratio will be fixed.
Throughout the test, the frequency of the tool lz@mon will be gradually changed so that
the phase shitt betweeny;(t) andY,(t) will vary in the range of 0° to 360°.

For each chosen value of cutting speed and eadudney the measured amplitude
and phase of the forcés® and F® will be drawn into the complex plane. The above-
mentioned analysis of the results obtained (Fig.wal allow us to specify the dynamic
coefficients of cutting forces. The same proceduik be repeated for the next cutting
speed. Thus it will be possible to observe the Yielia of the force coefficients depending
on cutting speed.

5. SUMMARY

The paper proposes a method of experimental ideatidn of the complex forces that
act during unstable orthogonal turning. The foraes considered as individual forces, not
components of one force. The method assumes theasttfour forces must be identified:
the forces of inner and outer modulation, proceampming force and damping force
generated in the cut due to tool flank wear. A# forces are assumed to be complex and
of different size and direction. This approach has been investigated yet. The existing
stability calculations consider only one dynamicttiog force decomposed into two
orthogonal components. On the one hand, the assamydtthe complex forces complicates
the identification, but on the other hand it cdmites very probably to an improvement
of the stability limit prediction. The forces hate be identified experimentally, under the
cutting conditions variable in proper ranges. Thpeeimental validation of the proposed
theory and method of the complex force identifaatiwill be a subject of a future
investigation.
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