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ANALYTICAL TIME-DOMAIN MODEL FOR TOOL POINT DYNAMICS
IN TURNING

An analytical time domain solution is developedrtodel the dynamic response of a tool during a ryaining
operation. The time domain solution developedhiis paper relies on the superposition principalaurithe
linear assumption to construct the time responsesiofle mode, single degree of freedom cutting .tool
The results from the analytical solution are corapgawith those generated using numerical time domain
simulations and it is found that the two soluti@mmverge as the time step used in the numericallation
decreases.

1. INTRODUCTION

Dynamic instability, or chatter, is a common oceuage in machining environments
which can lead to undesirable part outcomes in geafinpart surface and dimensional
guality. Chatter is a result of regenerative dyr@afarces inherent in the machining process
which can cause the system to be either stablenstable depending on the parameters
of the cutting operation and the dynamic charasties of the machine tool [9],[12]. One
of the primary objectives of research in machiyaashics is to better understand and
characterize the dynamic behavior of machining ajp@ns so that chatter can be avoided.

The first successful model for machine tool chaferturning is based on the concept
of regenerative vibrations developed by Tlusty @}. [In this model, force interactions
between the vibrations of the tool during one pasd the imprinted surface left behind in
the previous pass cause the tool to be eitherestablnstable depending on the dynamic
properties of the tool and the cutting parametBige to the influence of the tool motion
during the previous pass, a delay differential équa(DDE) is required to describe the
system dynamics. Due to the difficulty in solvingetDDE analytically, the limiting stable
depth of cut over a range of spindle speeds isrmi@ted by examining the vibration
magnitudes of subsequent passes in the frequemasgido

The methods developed by Tlusty continue to bec#ife for continuous cutting
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applications (like turning) even when compared witlore recently developed stability
analyses methods [2]. However, increased complefitthe cutting processes in milling
have motivated further research in stability analysethods for milling applications. Using
a similar approach developed by Tlusty for turniothers have expanded the technique by
incorporating various levels of detail on the vagydirectional force coefficients present in
milling to increase the accuracy of the stabiligbés [1],[6]. Insperger and Stepan
developed an alternative stability analysis techaign which the DDE describing the
system is converted to a periodic DDE, and the i@dd heorem is applicable to determine
stability{4],[5].

Time domain simulations are also effective in anialg the stability of machine tool
stability. Numerical simulations are advantageowescabise they easily account for
nonlinearities in the system, such as varying falicections and loss of contact between the
tool and the work-piece [11]. However, the highefity of the time marching numerical
simulations comes at high computational expenseth&unore, the results of numerical
simulations only indicate whether the system iblstar unstable, and there is no indication
as to the underlying cause of the behavior.

To improve the efficiency of stability analysis the time domain, Davies et al.
developed an analytical approach where the toahtpdynamics are derived using two
separate models depending on whether the tool @& iout of the cut during low radial
immersion milling [2],[3]. While the analytical adion for the free, non-cutting tool is
trivial, the analytical solution for the tool indhcut is approximated as an impulse [3] or
using temporal finite element analysis [2] becatsee is no exact solution during cutting.

In this paper an analytical solution is developedalve for the time response of the
DDE in the regenerative chatter model. In this soty the propagating effects of some
perturbation event are determined analytically,epehdent of the time delay. Through
superposition, these propagating effects are cazabio form the total time response of the
tool for a single degree of freedom system. Theatifeness of the analytical solution is
determined by comparing the time responses to thb&gned using numerical simulations
of a turning operation.

2. DYNAMIC MODEL

The model used to develop the time domain solusoshown in Fig. 1. The tool is
modeled as a single mode, single degree of freesfming mass damper system which is
flexible in the feed direction of the tool. The dorg function which acts on the tool during
the cutting operation is derived by assuming ortmad) cutting conditions. Under the
orthogonal cutting assumption, the tool face igmed normal to the feed direction, and the
magnitude of the cutting force, F, is found as pheduct of the chip area (area of contact
between the tool and the material), and the matea#ing force constant, Ks. The
dominant cutting forces are in the direction of thaterial flow (Ft), and the feed direction
(Fn), which are related to the force magnitudethFough a cutting force anglg, As the
tool is assumed to be flexible only in the feedediion, only the normal component of the
force, Fn, affects tool motions. The cutting foomstant, Ks, and the cutting force angle,
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B, are determined experimentally, and the chip aseealculated as the product of the
instantaneous chip thickness, h(t), and the deptui b (the depth of cut, b, is in the out
of plane direction in Fig. 1).

Feed
Direction Chip
F J° Formation
n

Feed
Direction

Fig. 1. lllustration of cutting forces acting orettool during orthogonal cutting, and the variatiohe chip
thickness, h(t)

The resulting force acting on the tool varies ofrere due to variability in the chip
area caused by changes in the chip thickness, Ti®. chip thickness describes the
dimension of the chip area in the direction in whibe tool is flexible, as such, tool point
vibrations change the effective area of the chijg ave a wavy surface on the part. The
resulting value of the chip thickneds(t), is then a function of the tool position in the
current passx(t), the tool position in the previous pas$t-zr), and the global feed per
revolution,h,. The resulting expressions describing the forcelvhcts on the took,, and
the instantaneous chip thickness, are shown in equations (1) and (2). The resulting
differential equation describing the tool point dymics in turning process is shown in
equation (3).

F. (t) = K, cos(B)bh(t) (1)
h(t) = h,+Xx(t-7)-x(t) (2)
mx+cx+kx=K, cog B)b(h, +x(t7 )-x(t) 3)
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3. GENERAL ANALYTICAL APPROACH

The time delay termg, in equation (3) is required to describe the systh/namics
because the instantaneous cutting force is dependehe tool position during the previous
revolution. The resulting time delay differentiguation (DDE) significantly increases the
complexity for an analytical time domain soluti@efore delving into the processes used to
solve equation (3) in particular, we will first disss the general solution strategies for
problems of this type.

The method of steps [7] is the most common apprdacsolve DDEs of this form
(linear with a single, discrete time delay). Thiethod has been used to develop a time
domain solution for turning in [8], however, thellgmn process proved to be extremely
cumbersome after only a few part revolutions, aniiatlab solver, dde23 [10], was
employed to simulate the tool behavior over longeriods of time. In this paper an
alternative approach used to solve equation (3chvhises superposition to simplify the
solution process. The two solution approaches angpared by examining a simple DDE
example shown in equation (4).

y+y(t-7)=0,y(0)=1,y,=1 4)

The method of steps solves DDEs by replacing thayderm,y(t —z), with a known
function which definey over the previous time intervaln-1)r<t<nr, starting with an

initial function, y,, defining the position on-7 <t <0 to start the solution process. By
replacing the delay term with a known function, ®BE is converted into an ordinary
differential equation (ODE) that can be solved odescrete time periods. The general
solution procedure is shown in equation (5), whéne solution over the interval,
nr <t<(n+1)r, is the solution to equation (5) when the posifimm the previous interval,

Yn, IS the input. The initial condition at the stafteach new interval is equal to the condition
of the system at the end of the previous rangthignway, the total solution is found as a set
of individual solutions, each defined over a diseréme interval. The solution to equation

(4) using the method of steps with a time delay ©f0.5s is shown in Fig. 2. Each interval

in Fig. 2 is defined by a single functiop(t), and the function for each interval defines the
negative slope of the following interval.

Yo (t) ==Vn (t), ntst<(n+1)7,
yn+1(n2') = Yn (nT)

The approach developed in this paper to solve equéB) is similar to the method
of steps in that it converts the single DDE intoltpie ODEs. However, rather than having
a separate function describing the response owér iedividual time interval, superposition
IS used to construct the total response using efsatdividual solution curves, called
sequential responses. The sequential respopégsused to form the solution to equation
(4) are found by solving the recursive differenggluation shown in equation (6). Note that
the sequential responses are defined on a rarggr@to infinity, and the initial condition is
always zero. In equation (7) the first four seqisnmesponses are calculated according to

(5)
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equation (6), starting with the initial functioy,= 1 starting at = . Based on the patterns
that emerge from the recursive solutions, the esgpoa for any sequential response for this
problem can be calculated directly using equat®)n (
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Fig. 2. Solution to equation (4) using the methbdteps with a time delay af= 0.5s
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The sequential responses described by equatiofor(®) a basic set of curves which
combine through superposition to form the totalusoh to equation (4). To form the
solution to the DDE, each sequential response deddo the total solution at a delayed
time, such that the sequential resporygestarts at time=(j-1)z. The structure of the total
solution is defined in equation (9) and a depictdrthe process is shown in Fig. 3. Note
that the value of each sequential response is aettoe time which it is added to the total
solution. This is due to the zero initial conditiestablished in equation (6) which prevents
discontinuities in the total response (i.e. thedioons at the start of each time interval in
the method of steps is already accounted for byptleeious sequential responses in the
superposition approach).
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Fig. 3. lllustration of how the total solution isrtstructed using the sequential responses

It is also interesting to note that as the delagregches zero, the total response
described by equation (8) and (9) reduces to equdfi0). The resulting summation is the

series definition ok™, which is known to be the solution 0+ y(t-0)=0 .

itj

y()=3y, =52

What is most significant about the superpositioprapach is that the sequential
responses which constitute the total response efsyistem are independent of the time
delay term. As such, for a given system the sedalaesponses need only be derived once,
and the total response can be determined for ditteralues ot by changing where in time
the individual sequential responses are applied. @&xample, in Fig. 4 the solution to
equation (4) using the superposition approach asvahfor four different time delays. Each
solution shows significantly different behavior,wever, the sequential responses which
constitute the total solutions are the same in .ea€his is in contrast with the method
of steps, where the individual functions for eaafetinterval,y,, must be re-calculated if
Is changed. The general process discussed heoviImear DDEs with a single discrete
time delay is now applied to the more complicataching process. In the following
sections, equation (3) is modified to a form in evhithe superposition approach can be
applied, and the resulting sequential responsesufming are derived. These sequential
responses are then combined with different timay$eto produce the total time response
of the tool during the turning process.

e’ (10)

M
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Fig. 4. Sequential responses used to solve equ@)dor multiple delays, where the sequential orses are the same
for each solution

4. ANALYTICAL TURNING MODEL

The solution process for equation (3) begins bymasg that the chip profile that the
tool encounters at any point in tintgg(t), is known. The nominal chip profile, shown in
Fig. 5, includes information about the tool motiansthe previous pass relative to the
neutral position of the took(t) = 0. If the chip profilehnon(t), is known, than the resulting

force on the tool at any point in time can be dalmd asF, =bR(h,,, (t)-x(t)), where

R=K,cog(f). Substituting the modified force expression injo&ion (3), and moving the

remainingx term in the forcing function to the left side tetequation, the resulting ODE
describing the tool point response is given in équg11), wherek ) =k +bR.

mX+cx+k, x=bRh,, () (11)

The resulting ODE successfully eliminates the tadetay term in equation (3) because
it is assumed that the chip profile, including mhation about the tool position in the
previous pass, is known. The objective of the supstion approach is to predict the chip
profile, hyon(t), that the tool will encounter based on the actbrhe tool during all prior
passes.
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\7_[ h(t) = hnom(t) - X(t)

h nom(t )

Fn(t)1—> t \x(t)

Fig. 5. Modified view of the chip profile, wheregtimominal chip profile, fa {t) is known

In order to predict the nominal chip profile, timiial stages of the turning process are
examined. In Fig. 6 the initial stages of a turnomggeration are shown, where the tool feeds
into a part which initially has a flat face. Duritige first rotation the nominal chip profile
increases linearly, and then flattens out at thé ehthe first rotation when the tool
encounters material removed during the first retou

The initial nominal chip profile in Fig. 6 can beodelled as a combination of two
ramp functions, shown d%n,1(t) and h,om1(t) in Fig. 7. The first ramp function begins at
t=0 and represents the tool feeding into the parinduthe first rotation. The second is
a negative ramp function beginningtat with the same slope as the first which causes the
total input to flatten out at=z. Under the linear assumption, the total resporis@etool
can be found as the summation of the responsée ttwb individual ramp input functions.
The individual responseg;(t) and x,(t), are the solutions to equation (11) whggh(t)
and hyom1(t) are input. The total response, x(t) in Fig. #hisn the summation of(t) and -
X1(t), wherex,(t) starts at=0,and x,(t) starts at=z.

x(t)
>

—

—

—
%

Feed Direction

Feed Per Revolution

l

11"(7"1( ’)

l Nominal Chip Shape
x(t)i Relative to Machine Axis

ot 20

Y
T

Fig. 6. lllustration of the beginning of the turgioperation, and the nominal chip profile shape e tool
will encounter
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Fig. 7. Superposition used to model the initial imahchip profile as a combination of two ramp ftioos,
separated by time,

The next step is to consider the material that ltsbehind during the first rotation

that the tool will again encounter during the setawtation, as shown in Fig. 8.
Fortunately, this additional material profile isdmn exactly as;(t). Superposition is again
applied to append the effects of the material betiind in the first rotation starting at the
beginning of the second rotation. This additioreponsex,(t) starting at=z, is found by
solving equation (11) usini,om2(t)=x.(t) as the input function. Finally, the total respmns
for the second part rotation is calculated as tirarsation ofx(t) starting att=0, andx,
(t)-x4(t) starting at=z, as shown in Fig. 8.

i N 0 t<(-2r
X“"Xl“”,;{x; (t=(i-07)-%(t-(i-97) .t=(-2r o

.. . R h
Additional material on esponse t0 hnom (1)

second pass left behind

- Xa(t)
in first pass, hyp o(t) hyoma(t)

- x(t) 7

Fig. 8. Superposition used to model the influericlh® material left behind in the first part rotati
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As the number of rotations increases, the sameepsods repeated, where the
subsequent responseg(t) and x.i(t), are applied to the total response of the system
starting att = (j-1)z. The resulting time domain response for the tymperation shown in
Fig. 6 is given in equation (12), wheXxe's the total number of part rotations, ag@) is the
jth sequential response to the initial ramp input.

5. SEQUENTIAL RESPONSES

The sequential responses(t) in equation (12), which combine to form the tdtzdl
response for the turning process are derived byethod repeated tool passes over the
same section of material starting with an initexp profile. Looking at Fig. 8, the response
to the material left in the first revolution is calated by solving equation (11) with the
input function,hpem2(t)=X1(t), to obtainx,(t). For the third revolution, the additional matéria
left behind during the second revolution must tlenaccounted for by solving equation
(11) with the input functionhpems(t)=xo(t), to obtainxs(t), and so on. This process is
illustrated in Fig. 9, where the sequential respsrare found as the response of the tool as
it passes over the material left behind in the jougs/ pass.

hnom,l(t) =t

Pass 1 : T
‘,,«"'T\‘ 0
X;(t)
t
— hnom.:(t):xl(l)

Pass 2 gﬁlj x;(t)\

—

hn m ‘(t) = X'\(t)
Pass 3 § T )

X3(t)

Fig. 9. illustration of how the sequential respanaee calculated, starting with an initial rampdiion

The analytical representation of the sequentiglareses is expressed in equation (13)
as a recursive differential equation. The basetianavhich begins the sequential responses
is a linear function of slope ongy(t)=t. Note that the actual slope of the initial funaotis
equal to (RPM)*(Feed per rev)/60, which reflects tate which the tool feeds into the part.
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The initial slope of one is used here to simpliblctlations of the sequential responses.
After calculation, the responses are scaled tecethe actual slope. Additionally, the initial
conditions for the tool at the beginning of eachusmtial response are zero velocity and
zero displacement. When the sequential respongeadated to the total solution, at time
t=(j-t) according to equation (12), the tool is alreanljofving a motion path that is defined
in the previous revolutions. As such, the condgiasf the tool at the start of a new
revolution are already accounted for, and zergaindonditions can be applied to find the

influence of the material left in the previous pass
mX; +¢X; +k X; =bRx;_, i
%(t) =t, x (0)=0, % (0)= 0 (13)

5.1. CALCULATION OF SEQUENTIAL RESPONSES

The first sequential response is calculated byyapplthe inputxy(t)=t, into equation
(13) and solving for the response(t). The resulting expression for the first sequéntia
response is shown in equation (14).

AC Linear,DC
x(t) =V, A 1 %—1 sin(a)pt)+£ cos@,t )+ t-—
w, | Kk, k

p K (14)
k
A:i’ w. = _p—Az’ VO:@
2m’ " \m k,

wherew, is the damped natural frequency of the systéirs the exponential decay
term for the tool vibrations and, is the slope of the response relative to the stfpie
initial input function. The second sequential e is then found by inputting(t) from
equation (14) into equation (13), and solving #oft). Expressions for the first three

sequential responses are shown in equation (1) adbstitutingH :ki, G :i(HA—l) .

p p

The resulting plots for the first three sequenteéponses in equation (15) are shown
in Fig. 10 for the system parameters defined inld4b It can be seen that each response is
composed primarily of vibrational and linear comeots, and that the slopes of the linear
components, which dominate the early responsegsease significantly as the number
of responses increases. Eventually, the linear coewt effectively diminishes and the
vibration component dominates. In Fig. 11 the wuibra components of the first three
sequential responses are plotted. The vibratiorsaoh response are a result of excitation
from the vibrations of the previous response, angd the behavior of these subsequent
vibrations and their interactions through equatib?) which determines the behavior of the
total response.
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X () :VOe'At (G sin(a)pt)+ H COS@pt ) +V, (t -H ) ’

G . V4 H Vi
——tsin| wt-—|+_—tcog wt-—
bR] n Za)p 2 2a)p 2

xz(t):vo(E e J{ c . ] +V7 (t-2H),

sin(a)pt) +2H km cos{a)pt)

C()p p P

bR 2 p p p P
X(t) =V, (—j e” +V?2(t-3H
Um S L2+2Hm tcos(wpt—zj o )
w, 4a)p kp 2
1 G m 1({m ’ .
— -— | — sm(wpt)
2w, | 4w, a)pkp w, kp
. (15)
m
+3H| — | coslawt
2 ealon)

5.2. MATRIX FORM OF SEQUENTIAL RESPONSES

As the number of sequential responses increadascdames increasingly difficult to
solve them by hand due to the increased compleXithe equations. However, there are
several patterns that emerge in the solutionscirabe used to develop a general expression
for the solutions. The resulting expression desuagilthe solutions to all of the sequential
responses is provided as a matrix equation in equét6). The matrices in equation (16)
reflect the patterns that emerge in the sequerdsgdonse equations relating to phase shift,
orders of t, and their respective coefficients.

x(t)
Xzz(t) =0,,[Wol o, () +WyL, () ]+S, (1) (16)
Xy (t)

Si(t) is the linear component of the solutions andakulated in equation (17), where
N is the maximum number of part rotations to be eted.

Vo(t-H)

Vo2 (t—2H)

S,(t) = (17)

Vol (t=1H) Jj 21 5, N
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Fig. 10. Plots of the first three sequential regesndescribed in equation (15)
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Fig. 11. AC components of the first three sequéntisponse functions



88 Luke BERGLIND, John ZIEGERT

TheW andL matrices piece together the sine and cosine teithsthe correct order
of t and phase shift (equation (18)) with the ceprnding coefficient (equations (19)). The
G and H subscripts indicate which initial constiduat matrices are associated with.

e sin(a)pt)

te ™ sin(a)pt —]—ZTJ
LG,x(t) = .

tite ™ sin(a)t— (j —l)’—Tj
i ' 2)]j=1,2,..N (18)
i e cos(a)pt) |

te ™ cos(a)pt —%Tj
LH,x(t) = .

- T
ti e cos{a}pt - (- 1)Ej

Jj=1,2,..N

The coefficients of th&/ matrices are calculated based on their positidhemmatrix.
The diagonal terms, which are associated with ilgbdst order of t for the for the jth
sequential response, are calculated using equ@i)nThe coefficients of the first columns
of the W matrices, which are associated with the t of orleno, are calculated using

equation (21). The remaining lower triangle coedints are calculated using equation (22),
and the upper triangle coefficients are all zero.

i G1,1 0 0 0 |
W — WGZ,l WGZ,Z 0 0
¢ : Wes, - 0
_WGJ,l e ) WGj'j_J,Izl,z, ..N
_ - 19
VVHZI.,l O O O ( )
W - WH2,1 WH 2,2 O O
. : WH3,2 O
(Whjn Wi V\/'*J"J'_j,i =12,...N
G
Wi =— (D
(i —D'(2w,)”
i} 20)

Hij.j

(i —D¥(2aw,)"™
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j-1
1 m
=g o
j-1
.l m
Wy =H J(k_J
P
W..=;[i(i—1)w.. Wi
el 264)p(i—1) ermt e (22)
_ 1 s
WHJ'J - pr (i _1) |:| (' 1)WHj,i+1 +WHj—lj—1:|

Finally, the coefficient in front of the oscillagnterms is accounted for b9,, as
shown in equation (23).

v, 0 0 0
0 vo(b—n'?j 0 0
o 0o . o0 (23)
0 0 0 vo(@jj_l
L m/ Jj=12,...N

6. NUMERICAL SOLUTION COMPARISON

The analytical time domain solution developed ins tpaper is compared with
numerical simulated results for a simple turningrapion. The system parameters used for
the turning examples are provided in Table 1.

Table 1. System parameters used for the turningnphes

k 5E7 N/m
m 0.88 kg
c 663.325 Ns/mg= 0.05)
Ks 2E9 N/m~"2
B 70 degrees
Feed per rev 0.076 mm (0.003 inch)

The two examples used for comparison are showh@s\tstem stability lobe diagram
in Fig. 12, where example 1 is expected to be biestaand example 2 is expected to be
stable. Example 1 has a spindle speed of 2000 #p®03s), in example 2 the spindle speed
is 12000 rpm 4=0.005s), and in both examples the depth of buis set at 10% above

l':)Iim,crit-
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In both examples the analytical response is foyndgdplying the sequential responses
in equation (16) to the double ramp turning modetquation (12). The results from Fig. 13
show the positional response, x(t), from the amaytmodel and the numerical simulation.
The positional responses shown here are the tepladiements relative to the nominal
position of the tool, which eliminates the globakkr feed of the tool during the operation.
The results from Fig. 13 show that the responsa fifee analytical solution closely matches
the response from the numerical simulation. Howewbe dominance of the linear
component of the response makes it difficult to deils of the AC component responses.
In Fig. 14 the acceleration responses are showrefample 1 to eliminate the linear
component, where the acceleration sequential regsoracc(t), are derived by
differentiating the positional sequential responséd, twice. Here again, the vibrational
component of the tool tip response using the amalytsolution matches that of the
numerical solution.

Stability Lobe Diagram

14}
2 Unstable Region
10+
. *
| /
Example 1 Example 2
4,
2} Stable Region
% o  aw 800 10000 12000

Spindle Speed (RPM)

Fig. 12. Two examples shown on a stability lobeychan, where example 1 is unstable, and exampletalide

The time domain responses for the two examples showig. 14 and Fig. 15 were
obtained by applying the sequential response a@trlas to equation (12). This process is
illustrated in Fig. 17, where the individual accateon components of the sequential
responses are plotted along with the total acaed@raesponse for both examples. Because
the depth of cut, b, is the same in both examgles,individual acceleration responses
which combine to generate the total response &adme for both examples. As such, the
only significant difference between the two exaraptethe value of the time delay,

In example 1t=0.03s, corresponding to a spindle speed of 2000R&M\ the
individual vibration pulses are spread out far goin time that there is little interaction
between them, and each pulse can be easily obsémvélie total response. The lack
of interaction in example 1 between the individpalses means that the trend of the total
response will follow the trend of the individualsponses (i.e. if the amplitudes of the
individual vibrations grow, so will the total respse).
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Fig. 13. Simulated and analytical positional regmymx(t), for Example 1
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Fig. 14. Analytical and numerical acceleration mrsges for example 1
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In example 2,r is much smaller due to higher spindle speed, #&edindividual
vibration pulses have significant overlap. The lasy interactions between the multiple
vibration pulses have a cumulative constructivel@constructive interference effect, which
causes the total response to be stable or unstapnding on the value of In example 2,
the cumulative destructive interference between mimgatiple vibration pulses create
a circumstance where the total response has deweamplitude with time while the
individual acceleration vibrations increase overei

Example 1: 2000 rpm, T = 0.03s
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Fig. 17. lllustration of how the total tool tip pEnse is generated from the sequential responses

7. CONCLUSION

An analytical model was developed to describe thne tdomain response of a tool
during a simple turning operation. The method seb& superposition to construct a total
dynamic response from a fixed set of individualuential responses. These sequential
responses stem from some initial excitation evemug ramp function in this derivation)
which propagates over time through repeated seitaon. The resulting dynamic
response of the system as a whole is found as &ination of the sequential responses
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applied at different points in time based on timeetidelay terms. This solution approach
provides some insight as to the cause of instgldiidm a time domain perspective, where
the global behavior is a result of constructivadeconstructive interference between many
vibration pulses which propagate over time. Cufyerthis approach has shown to be
effective for continuous cutting in turning basech @omparisons with numerical
simulations.
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