
Journal of Machine Engineering, Vol. 17, No. 3, 2017

Received: 06 February 2017 / Accepted: 02 June 2017 / Published online: 28 September 2017

holonic manufacturing systems,

integration, control, reference architecture,

virtual execution

Hendrik Van BRUSSEL
1*

Paul VALCKENAERS
2

DESIGN OF HOLONIC MANUFACTURING SYSTEMS

The introduction of CIM (Computer Integrated Manufacturing) systems in the 1980s, aiming at integrating

automatic workstations into fully automated factories, was not successful. The root causes

of this failure were that the subsystems to be integrated were not suitably designed for easy integration into

a larger system. This situation stimulated the authors to embark on a research programme on ‘design for

the unexpected’. It defined how subsystems have to be designed so that integration into larger systems becomes

easier and how such an integrated system can be controlled so that it can cope with change and disturbances.

In the paper, the design principles and salient features of holonic manufacturing systems (HMS) are outlined.

The PROSA reference architecture, defining the basic structure of any HMS, is described. It is further explained

how coordination and control of the HMS is achieved by a holonic manufacturing execution system (HMES),

based on the combination of the PROSA reference architecture and a biologically inspired Delegate Multiagent

System (DMAS). Finally, the power and universality of the PROSA/DMAS system is demonstrated by some

case studies from manufacturing, robotics and open air engineering.

1. INTRODUCTION

Somewhere in the 1980s, computer-integrated manufacturing (CIM) systems came

into existence. These were systems of systems aiming to integrate automated workstations

into fully integrated factories. Unfortunately for the industrial world, the results were

underwhelming. Why?

From 1985 onwards, the authors set out to find out what causes smaller systems when

integrated into a larger system of systems, to collide. Subsequently, they developed a design

methodology that leads to easily scalable, robust (manufacturing) systems.

The methodology is described in a book, entitled: ‘Design for the unexpected. From holonic

manufacturing systems towards a humane mechatronics society’ [1].

As the title of the book suggests, in order to avoid collisions, the designer of the

smaller systems to be integrated must refrain from making assumptions about

the system of systems in which the smaller systems are to be integrated. Indeed,

1
 Faculty of Engineering Science, KU Leuven, Belgium

2
 Faculty of Engineering Technology, KU Leuven, Belgium

*
 E-mail: hendrik.vanbrussel@kuleuven.be

6 Hendrik Van BRUSSEL, Paul VALCKENAERS

the designer may not impose arbitrary constraints or at least must make it easy to revise

them. As will be shown, low-and-late commitment is important to achieve that goal.

2. DESIGN OF COMPLEX-ADAPTIVE SYSTEMS

2.1. SIMPLE, COMPLICATED AND COMPLEX SYSTEMS

Systems can be simple, complicated or complex. The behaviour of simple and

complicated systems is well predictable. The reasons are that the interconnections between

the system components are well-defined and fixed, while the component interactions remain

simple and predictable. A bicycle with some hundred components is a simple system, a car

with some ten thousand components is a complicated system. Manufacturing systems are

complex systems. Complex systems are systems whose behaviour cannot be inferred from

the knowledge of their constituent subsystems in isolation. Their behaviour is dictated by

the nature and the sequence of the interactions of the subsystems. They exhibit emergent

behaviour, or even self-organisation, and this makes the system behaviour less predictable

and their control difficult. Large complex systems, with a large number of components

(called ‘agents’ or ‘holons’) that not only interact, but also adapt and/or learn, are called

complex adaptive systems. Holonic manufacturing systems, the subject of this paper, are

complex-adaptive systems.

Designers of complicated systems, e.g. cars, remain largely in control of what their

artefacts will be. In contrast, many artefacts in a modern human and industrial society, like

infrastructures and manufacturing systems, are simply too complex to be conceived

explicitly by humans. They emerge by the combination and integration

of simpler systems. The resulting emergent behaviour is too often characterised by poor

performance and missed opportunities. In this paper, a design methodology is outlined that

avoids collisions between subcomponents when combined into larger systems and that

enables the system to cope with changing requirements or unexpected events.

2.2. FUNCTIONAL DESIGN VERSUS STRUCTURAL DESIGN

Simple or complicated systems use to be designed by a top-down functional design

methodology, by which the design team remains largely in control of the system

performance. Axiomatic design [2] is a representative example of this approach. The method

starts from the functional requirements (FRs) defined by the users. These FRs can be

satisfied by manipulating some design parameters (DPs). Axiomatic design is based on two

basic axioms: (i) the independence axiom, and (ii) the information axiom. The independence

axiom requires the FRs to be independent, meaning that each FR should preferably be

controlled by only one DP. The information axiom states that the best design is the simplest

design that still satisfies all the (independent) FRs.

 Top-down functional designs are extremely vulnerable to changes in user

requirements. Furthermore, they force designers to make important choices early in

Design of Holonic Manufacturing Systems 7

the design process when they have minimal knowledge about the future use of the designed

artefact. In conclusion, top-down functional design remains the methodology of choice for

developments that need to become operational as fast as possible, need to be efficient and

can recover their costs by answering their initial requirements only. Such developments

typically produce mechatronic (systems of) systems, like e.g. cars, robots, machines,

chemical plants.

 A design approach that is more suitable for the aims pursued here is based on

a structural decomposition of the design problem, rather than the functional approach of the

axiomatic design. It has been developed predominantly for software design in the 1980s and

is called object-oriented design, pioneered by Jackson [3]. It is based on the insight that user

requirements are highly unstable parts in a design problem, and further on the facts that in

top-down design one is forced to take crucial decisions early in the design process, and that

in the real world there is seldom a single hierarchical decomposition.

 Jackson realised that the world of interest for the problem is the most stable over time.

His methodology consisted of reflecting in software the entities of interest and their

relationships. Next, measures are implemented to keep the information in the computer

system synchronised with reality. Finally, the functionality needed to answer the user

requirements is implemented on top of this reflection of the world of interest (WOI).

This reflection of the world of interest is called essential model. It describes (i) the possible

states the WOI can be in, (ii) which events cause which state transitions, and (iii)

the possible sequences in which events can occur. In our design for the unexpected of HMS,

essential models play a crucial role, as a single source of truth.

2.3. DESIGN PRINCIPLES - DESIGN FOR THE UNEXPECTED (D4U)

 Design of subsystems for emergent solutions imposes its own requirements.

Two design principles guarantee the easy integrability of subsystems into larger systems

under varying operational conditions.

P1. Problem solvers must avoid introducing potentially harmful constraints

 This principle calls for design decisions introducing stable constraints first and as

much as possible, e.g. the universal use of 240V/50Hz in Europe. Maps in navigation

systems and nonlinear process plans (essential models) are other examples. Unstable

constraints must be avoided or introduced as little and as late as possible (low and late

commitment). An example would be integer versus decimal representation of numbers in

software.

P2. Problem solvers must avoid/reduce the inertia build-up for potentially harmful

constraints

 When designers cannot avoid introducing unstable constraints, they may not use them

to justify subsequent unstable design decisions. Repeatedly making design choices

introducing an unstable constraint will build up inertia; it will practically become impossible

to undo this introduction when it reveals to be an unfortunate choice later. E.g. legacy

software systems are commonly associated with this issue.

8 Hendrik Van BRUSSEL, Paul VALCKENAERS

2.4. HOLONIC SYSTEMS – FLEXIBLE HIERARCHIES

 Two observations of how social and biological systems are organised motivated

Arthur Koestler [4] to propose the concepts of holon and holonic systems.

The first observation was that complex systems will evolve from simple systems much more

rapidly if there are stable intermediate forms present. This observation was influenced by

Herbert Simon’s parable of the two watchmakers [5]. Simon’s parable demonstrates how, in

dynamic and demanding environments, the chances of emerging and surviving for systems

composed of suitable subsystems are vastly superior to systems composed from basic

elements without stable intermediate states or subsystems.

 The second observation was that, although it is easy to identify sub-wholes or parts,

wholes and parts in an absolute sense do not exist anywhere. The term holon was proposed

to describe the hybrid nature of sub-wholes/parts in real-life systems. Holons

simultaneously are self-contained wholes to their subordinated parts, and dependent parts

when seen from the inverse direction. Or put more simply: a holon is something that is

whole in itself as well as part of a greater whole. Koestler called this behaviour the Janus

effect.

Koestler also points out that holons are autonomous self-reliant units, which have

a degree of independence and handle contingencies without asking higher authorities for

instructions. At the same time, these holons are subject to control from higher authorities.

The first property emphasizes that holons are stable forms and can cope with disturbances.

The second property highlights that holons are intermediate forms, providing the proper

functionality for the larger whole.

According to Koestler, a holonic system or holarchy is then a hierarchy

of self-regulating holons which function: (i) as autonomous wholes in supra-ordination to

their parts; (ii) as dependent parts in subordination to control at higher levels; (iii) in

coordination with their local environment.

2.5. HOLONIC MANUFACTURING SYSTEMS

Based on the concepts of Koestler, a new form of manufacturing systems, called

holonic manufacturing systems, emerged. This new paradigm had the ambition to provide

an answer to shortcomings of earlier factory control systems that led to the failure, and

ultimate demise, of the then prevailing CIM (Computer Integrated Manufacturing)

paradigm.

Holonic manufacturing execution systems (HMES) were put forward as it was realised

that neither centralized, hierarchical nor heterarchical control systems could face the

challenges the manufacturing world was confronted with. HMES try to combine the high

and predictable performance promised by hierarchical systems with the robustness against

disturbances and the agility of heterarchical systems by having characteristics of both

architectures. To avoid the rigid structure of hierarchical systems, holonic manufacturing

systems provide autonomy to the individual holons. This allows the control system to

respond quickly to disturbances and to reconfigure itself to face new requirements. In order

Design of Holonic Manufacturing Systems 9

not to ban all hierarchy, which is essential to master complexity, holons work together in

‘loose’ hierarchies. Such a hierarchy is different from a traditional hierarchy in that: (i)

holons can belong to various hierarchies, (ii) holons can form temporary hierarchies, and

(iii)holons do not rely on the correct functioning of the other holons in order to perform

their tasks.

The relationship between different levels is not a master-slave, but an advisory

relationship.

3. THE PROSA REFERENCE ARCHITECTURE

This section addresses the reference architecture of a holonic manufacturing execution

system (HMES). It describes the structure of the system of holons (holarchy), not

the internal structure of individual holons.

A reference architecture describes the mapping from various functionalities, which

cooperatively solve the problem, onto software components and the data flows between

these components. A reference architecture is not an architecture in itself, but can be used as

the basis for designing the system architecture for a particular system. Reference

architectures are used in a specific (mature) domain and arise from experience. E.g.

the reference architecture ‘Gothic cathedrals’ is the collection of knowledge and skills,

acquired by the medieval guilds, to build Gothic cathedrals. The cathedral of Chartres, with

its exquisite architecture, is an impressive instantiation of that reference architecture.

PROSA (Fig. 1) was originally developed for the manufacturing domain and, based on

experience in this domain, special attention was paid to: (i) separating the essential

elements, which are generic, from the optional elements, which can be domain specific;

these latter are called plugins in the sequel; (ii) separating the structural aspects from

the functional (algorithmic) aspects for resource allocation and process planning; (iii)

separating resource allocation aspects and process specific aspects; (iv) enabling

the incorporation of legacy systems, or the introduction of new technology.

Fig. 1. Module view of the PROSA reference architecture

10 Hendrik Van BRUSSEL, Paul VALCKENAERS

The PROSA reference architecture is developed in accordance with the holonic

manufacturing paradigm. The basic components are holons and the architecture describes

the responsibilities of the various holons and their interactions. The acronym PROSA stands

for Product-Resource-Order-Staff Architecture and refers to the different types of holons.

Three basic types of holons can be distinguished: product holons, resource holons and order

holons. Staff holons complete the set of PROSA holons.
Each holon represents a separate concern in the application domain: process planning,

resource allocation and logistics management, respectively. The basic holons can be

aggregated into larger holons and specialization can be used to structure them. Staff holons

are optional and can be added to provide the other holons with expert knowledge or to

incorporate legacy systems. Fig. 1 shows a module decomposition view of the holonic

reference architecture. The depends-on relationships between the holons indicate that

the various holons share data with each other.

3.1. RESOURCE HOLON

 A resource holon corresponds to a resource in the underlying domain (equipment,

infrastructure elements, personnel). In a logistic context, for instance, this means that all

transport means (trucks, freight trains, cargo aircraft…) and material handling equipment

(forklift trucks, conveyors, automated guided vehicles…) will be represented by a resource

holon. There will also be resource holons for other entities that are scarce and have to be

shared (e.g. docking doors, pallet racks, floor space, etc).

Each resource holon comprises the physical resource, together with a software part

that controls this resource. It offers knowledge about processing capacity and processing

functionality to the other holons and organizes and controls the usage of the physical

resource. A resource holon has the following responsibilities:

(i) Reflection of reality: A resource holon reflects its corresponding physical resource, at

all times, as a single source of truth, i.e. contains information about the current state

of the resource and expected future states.

(ii) Information provision: A resource holon should be able to provide resource related

information to the other holons. This includes process information (e.g. possible

operations), information about the local topology (which other resource holons this holon is

logically connected with) and about possible constraints (e.g. truck capacity, maximum

cargo weight, etc.).

(iii) Maintaining a local schedule: Each resource holon owns an agenda in which its

future tasks/operations are recorded, based on requests from order holons.

(iv) Managing its local schedule: The resource holons have local authority on how they

organize (sequence or schedule) the various operations (from order holon requests), for

instance by applying priority or batching rules.

(v) Virtual execution: This responsibility is a service for the order holons who can

request information on the virtual outcome of an operation (e.g. quality and end time).

(vi) Controlling the resource: A resource holon controls the real-world resource by

starting and stopping the (scheduled) operations and by monitoring the execution.

Design of Holonic Manufacturing Systems 11

3.2. PRODUCT HOLON

A product holon corresponds to a task type or order type. To accomplish the task or to

fulfil the order, a process (a sequence of operations) has to be executed. The product holon

contains the knowledge on how instances of a specific task type (represented by order

holons) can be executed by the resources, i.e. which operations are required to accomplish

the task correctly and qualitatively. The product holon also has information about

constraints on or process parameters of these operations. For instance, if the package

contains refrigerated products, the holon knows the allowable temperature range to which

the package can be exposed during transportation.

The main responsibilities of a product holon are:

(i) Maintaining process knowledge: The product holons hold the necessary process

knowledge to realize instances of their type. This includes, amongst others, process plans,

process parameters and quality requirements.

(ii) Determination of operation options: A product holon informs the order holons about

all possibilities for their next operation.

(iii) Process information provision: Just before a selected operation should start on

a resource, the resource holon needs to know the desired process parameters. The product

holon is responsible for providing this process information to the resource holon.

3.3. ORDER HOLON

An order holon corresponds to a task (instance) or order (instance) that needs to be

executed, e.g. the delivery of a package. The order holon is responsible for handling

the required resource allocations in order to accomplish the correct execution of its task.

In a manufacturing context, an order holon might correspond to a number of products that

have to be produced by a certain due date.

An order holon has the following responsibilities:

(i) Reflection of reality: An order holon reflects the order instance, i.e. contains

information about the current state of the order and the corresponding physical entity.

This includes for instance the location of the order, the current operation being processed,

the resource performing this operation, etc. The order holon is responsible for keeping

the reflection of its state up-to-date with the actual state.

(ii) Searching solutions: The order holons search for solutions to execute their tasks.

During their search, the order holons will consult their product holons to know the required

operations and will virtually execute these operations (by using the virtual execution service

of the resource holons) to check for resource availability.

(iii) Intention selection: Each order holon evaluates the solutions it has found and

chooses the most attractive solution (according to its performance measure) to become its

intention.

(iv) Reserving its intention: The order holon then informs the other holons about its

intention by making the necessary reservations (future allocations) at the involved resource

holons. As these reservations evaporate after a certain time, the holon has to confirm its

reservation at regular time intervals.

12 Hendrik Van BRUSSEL, Paul VALCKENAERS

3.4. STAFF HOLON

The three basic types of holons can be assisted by one or more staff holons. These

holons can provide the other holons with expert knowledge about certain aspects of their

decision making. Note that the staff holons only provide advice and that the basic holons are

still responsible for taking the final decisions. This way, the concept of staff holons allows

for the presence of centralized functionality in the architecture without introducing

a hierarchical rigidity. This centralized functionality allows aiming for a good global

performance, which is otherwise difficult to obtain as every holon tries to optimize its own

(selfish) objective. To obtain its advice, a staff holon may rely on centralized scheduling

algorithms, human input, artificial intelligence methods, etc. The various order holons will

attempt to execute (the relevant part of) the provided schedule. They will deviate from

the original schedule only if they find a significantly better solution or the provided advice

appears to be (or has become) infeasible.

3.5. INTERACTIONS BETWEEN THE HOLONS

As indicated in Fig. 1, the various holons interact and share data with each other.

Important to stress here is that these interactions do not describe the dynamics of the holonic

system described by the PROSA reference architecture. These dynamics are taken care

of by the Delegate MAS (DMAS) coordination system, described hereafter. They form

the basis of the holonic manufacturing execution system (HMES).

Product-order interaction:

The order holons interact with their corresponding product holon on how to correctly

execute their task by using certain resources. After (virtual) execution of an operation,

the order holon passes information about the resulting state and about next possible

resources to the product holon. Based on this information, the product holon provides

the order holon with all possible next operations. For instance, after loading a container onto

a trailer, the corresponding order holon consults its product holon to know the following

operation that should be executed. Usually, multiple options are available, e.g. direct

transportation to the final destination, transportation to an intermodal hub to be loaded onto

a train or ship, etc.

Product-resource interaction:

Product and resource holons share process related information. When generating a list

of possible operations for an order holon, the product holoninteracts with resource holons to

know which operations the resources can perform. The other way around, the product holon

provides the resource holon with technological aspects to correctly process an order, i.e.

the necessary process parameters to perform an operation. For instance, if refrigerated

products have to be transferred between two trucks in a non-cooled terminal, the product

holon will indicate that this transfer should happen as fast as possible and impose

a maximum transfer time.

Resource-order interaction:

The resource and order holons mainly interact to reserve operations on the resources.

To this end, the resource holons provide the order holons with the results of virtually

Design of Holonic Manufacturing Systems 13

executed operations and reserve capacity when requested. Once an operation is started,

the resource holon also informs the order holons about the execution result and progress.

The desired coordination and control then emerges in a self-organizing way from the

interactions between the various holons.

4. BIO-INSPIRED COORDTION AND CONTROL IN HOLONIC

EXECUINATION SYSTEMS

Initial PROSA implementations were heterarchical control systems. Their order holons

would steer product carriers through a manufacturing system, visiting processing stations

and having production steps performed as allowed by the product holons. The system would

be myopic, lacking global optimization or coordination and operating much like

automobiles on the road.

In order to cope with this myopic nature of a pure heterarchical system,

an HMES based on stigmergy was developed. Stigmergy describes the mechanism by which

ants and other social insects are foraging for food. It reveals how to incorporate non-local

information in a solution while employing only local reality-mirroring components.

This property fits D4U perfectly.

Food foraging ants execute a simple procedure:

 In absence of any signs in the environment, ants perform a randomized search for

food.

 When an ant discovers a food source, it drops a smelling substance, called pheromone,

on its way back to the nest while carrying some of the food. This pheromone trail

evaporates if no other ant deposits fresh pheromone.

 When an ant senses a pheromone trail it will be urged by its instinct to follow this trail

to the food source. When the ant finds the food source, it will return with food, while

depositing pheromone itself. When the ant discovers that the food source is exhausted,

it starts a randomized search for food and the trail disappears because of the

evaporation.

This simple behavioural pattern results in an emergent behaviour of the ant colony

that is highly ordered and effective at foraging food while being robust against

the uncertainty and the complexity of the environment.

An important capability of this type of stigmergy can be observed: global information

about where to find food in a remote location is made available locally, indicating in which

direction the ant must move to get to this food. Also, the complexity of the environment is

handled in an elegant way by making the environment part of the solution (i.e. the complex

shape of the pheromone trails), effectively shielding the ant colony solution from this

complexity.

For the design and development of coordination and control systems, based on

stigmergy, following principles are recognized:

 Make the environment part of the solution to handle a complex environment without

being exposed to its complexity. This complies with the essential modelling approach

of object-oriented design.

14 Hendrik Van BRUSSEL, Paul VALCKENAERS

 Place relevant information (pheromones) as signs in this environment ensuring that

locally available data informs about remote system properties, supporting system-wide

coordination.

 Limit the lifetime of this information (evaporation) and refresh the information as long

as it remains valid. This allows the system to cope with changes and disturbances.

The combination of these sources of inspiration resulted, ultimately, in

the architectural patterns that are discussed next. The signal became the local schedule

of the resource holon. The deposition of pheromones was translated into order holons

reserving time slots in these local schedules. The ability to answer what-if questions allowed

ant agents to travel virtually and execute virtually what an order holon might ‘do for real’.

Our research translated this food-foraging in ant colonies into a solution that remedies

short-sightedness (myopy) in decentralised coordination and control systems. The solution

makes non-local information – using local reality-mirroring software components – locally

available. Remark that ‘non-local’ is to be understood both in the geographical/spatial sense

and in the temporal sense. It is about something both elsewhere and in the future.

4.1. DELEGATE MAS (DMAS)

The DMAS pattern allows an agent – i.e. a holon in the present discussion – to

delegate a responsibility to a swarm of lightweight agents. These lightweight agents perform

particular activities to support the issuing holon in fulfilling its functions.

A holon can simultaneously delegate multiple responsibilities, applying the delegate MAS

pattern for each of them. The holon may also use a combination of DMASs to handle just

a single responsibility.

These lightweight agents are called ant agents or simply ants, after their biological

source of inspiration. They are lightweight in the sense that each ant may only perform

a bounded computational effort within its bounded lifetime and has a bounded footprint

(memory). They are responsible for executing a task that serves a responsibility of the

issuing agent/holon.

Each ant is created and initialized by its issuing holon. It (virtually) travels

autonomously through the (virtual) environment. The ants start from a location selected by

their issuing holon. Typically, this location is where this issuing holon resides (virtually),

e.g. the location of a product carrier. But, an issuing holon may create ant agents at

a location from where finished products are shipped to their customer. From there, the ants

travel (virtually) in opposite directions, typically toward the location of the issuing holon.

Ants may even (virtually) traverse their journey twice, collecting information first and

depositing information (digital pheromones) during the return journey.

Corresponding to the description used before, the environment is a software

representation of the world-of-interest. To support navigation of the ants, resource holons

know their neighbours (note that this is local information). This effectively provides

a directed graph, possibly augmented by relevant information (e.g. maximum height),

allowing ants to discover their world-of-interest starting from their initial location. Note that

the evaporate-and-refresh mechanisms – copied and translated from the real-world ant

Design of Holonic Manufacturing Systems 15

colony behaviour – ensures that reconfigurations and other changes will be mastered by

the DMAS in a holonic MES.

A holon delegating a responsibility to a swarm of ants is responsible for maintaining

the population size and the diversity of this swarm. It chooses the creation frequency and

initialization for every ant type. The individual ants are not aware of these swarm properties.

The holons observe and interpret the (digital) pheromones in the environment and adapt

their behaviour accordingly.

Three types of delegate MASs are distinguished in the research prototypes: feasibility,

exploring and intention delegate MAS [9].

4.2. FEASIBILITY ANTS

A resource holon delegates part of its ‘information providing’ responsibility to

a swarm of so-called feasibility ants. These ants make global feasibility information (about

the capabilities of the resource) locally available for the other holons. They put a kind

of digital signposts on the blackboards of resource holons. They enable order holons to

decide locally which routing options are available to them.

4.3. EXPLORING ANTS

Every order agent generates explorer ant agents at a given frequency. These explorer

agents are scouts each of which searches for an attractive route through the underlying

production system that is to accomplish the given task (Fig. 2). Depending on

the performance criterion, these explorer agents search forward from the current state of the

task on (e.g. lead time minimization) or backwards from the final delivery point (e.g. due

date accuracy). Note that different order agents can have different performance concerns;

rush orders, normal orders, low priority orders, maintenance orders have different

objectives. The objective of a given order may even suddenly change (e.g. when a work

piece gets damaged and needs a speedy replacement).

These scouts use the same method as the order agent, managing the actual execution

of the task, to ensure that a proper sequence of processing steps gets executed, but virtually.

The feasibility concern is handled by the feasibility ant agents. As explained, these ants

deposit information on the information spaces (blackboards) attached to entries and exits

of the resources that allows the product agents to discern valid and invalid routings locally.

This information also evaporates and is refreshed to account for changes in the production

system.

The search strategy employed by the explorer agents is a plug-in of the control system.

Not every explorer ant uses the same strategy. Typically, some percentage looks for

the promising routes whilst other ant agents look for solutions that aim to avoid critical

resources. The key point is that the emergent forecasting (see further) does not rely on

which strategy is employed by these scouting agents.

16 Hendrik Van BRUSSEL, Paul VALCKENAERS

Fig. 2. Ant agents explore possible routes

During its exploration journey, ant agents delegate the information processing

to the product holon and resource holons. Their product holon provides the set of legal

routing options that are open to the scout at each routing point. It makes sure that the

product recipe is obeyed. The resource agents provide the necessary performance estimates.

When an explorer ant agent has virtually executed the task, it reports back to the order

holon. The report includes the journey and the performance estimates of that journey. Based

on the results of its exploring ants, the order holon keeps a set of candidate routes. These

candidates get refreshed regularly, either explicitly by specialized exploring ants that simply

follow a given route, or by ensuring that the normal exploring ants will rediscover these

currently attractive candidates with a high probability. The set of candidate routes

is selected based on the performance estimates and on their complementary nature (i.e. limit

the number of candidates that have very similar routings). The candidates that have become

too old are eliminated from the set of candidates by evaporation.

4.4. INTENTION ANTS

The above mentioned exploration requires the resource holons to possess

an adequate estimate of their future workload. The order holons generate intention ant

agents, at a given frequency, to serve this purpose. When a suitable set of candidate

solutions has been constructed (see above) and the estimated starting time for

the processing of the product instance(s) approaches, the order holon selects one of the

candidate solutions to become its intention. Then, the order holon generates intention ant

agents to notify the holons of the affected resources of its intentions (Fig. 3).

Design of Holonic Manufacturing Systems 17

Fig. 3. Ant agents propagate the order intentions

4.5. SHORT-TERM FORECASTING – PREDICTING THE UNEXPECTED

The combination of exploring and intention delegate MAS provides a view on

the short-term future of the system, which is based on an estimation constructed through

a decentralised virtual execution (i.e. a simulation embedded in the holonic MES).

Both resource and order holons have short-term forecasts about their predicted execution.

The order holons know the expected routings and resource allocations for their orders.

The resource holons the predicted loads for the corresponding resources.

The resource holons receive the necessary information to calculate a short-term

forecast of their utilisation via the intention delegate MAS. Based on these forecasts (and

their what-if functionality), they are able to give accurate answers to the queries from

the exploring ants. This in turn allows the order holons to have a precise view on their

short-term future. Note that the order holons create exploring and intention ants at regular

time intervals, even after they have selected an intention. This allows them to react to

disturbances and new opportunities and keeps the short-term forecasts up-to-date.

All short-term forecasts together can be seen as a dynamic schedule.

5. CASE STUDIES

 A few case studies taken from manufacturing, robotics and open-air engineering, are

discussed here to illustrate the application of the PROSA/DMAS scheme to achieve design

for the unexpected of holonic execution systems. Execution systems manage operations in

real-time. They only trigger system-specific activities, leaving detailed control to other

18 Hendrik Van BRUSSEL, Paul VALCKENAERS

systems. For instance, a manufacturing execution system (MES) leaves the pick-and-place

of a dashboard into a car body to the robot controller and/or human workers. In contrast,

the MES manages the routings and processing sequences for these products (e.g. car bodies,

doors and dashboards). Next to the mentioned three application areas, the PROSA/DMAS

scheme can be equally applied to logistics, urban mobility, railway operations, smart grids,

smart homes, e-health, showing its universality [1].

 Recently, when trying to apply PROSA to the non-manufacturing world, e.g. robotics,

the need was felt to rephrase the nomenclature of the manufacturing-specific PROSA holons

(product, resource, order, staff). This resulted in the ARTI (Activity-Resource-Type-

Instance) reference architecture, containing following holons: activity type, activity instance,

resource type, resource instance. More details can be found in [1].

Example 1: Networked manufacturing [6]

This manufacturing case study addresses a highly automated heat treatment multi-plant

facility. This facility performs heat treatment on metallic parts and includes several

processes: case hardening, vacuum hardening, induction heating, etc. The products demand

a certain temperature trajectory inside the furnaces in order to reach the required quality.

The time between different processes (for instance between case-hardening and tempering)

should not be too long for some products. The various furnaces differ from each other in

the range of working temperature and environmental condition (e.g. carbon level).

The facility is organized as a job shop in which the baskets containing the metallic parts are

transported automatically.

The HMES system is responsible for the routing of the to-be-treated metallic parts

through the facility, ensuring that these parts receive a correct treatment. The resource

holons correspond to the transportation and heat treatment equipment (e.g. furnaces,

washing stations and cooling beds). The services offered by these resources are used by

the product holons, corresponding to the metallic parts that have to be treated.Specific for

this application is that parts with compatible process temperature trajectories and

environmental conditions can be batched. When properly executed, this batching has

a significant impact on the performance of the capital intensive production system. Indeed,

a fully loaded furnace and a partially loaded one operate almost at identical cost whereas

the output differs significantly. The product holons can make use of a delegate MAS to

discover batching opportunities or, alternatively, to trigger the build-up of such batches.

This case study also investigated the scalability of the HMES by coordinating

manufacturing and transportation activities within networked production. A virtual

enterprise was considered, consisting of a network of heat treatment factories. New

companies can dynamically join or leave the network and new processes and equipment are

introduced as needed. Now the products have to route their corresponding parts at two

levels: the network level and the factory level. At the network level, the product searches for

transportation services between the different factories and heat treatment services (offered

by aggregated resource holons, offering all services of the resources at a factory). As such

a virtual enterprise is a semi-open system, lacking a single command and control centre,

the operations have to be organized without the disclosure of sensitive information to other

members of the network. Also, a mechanism is required to deal with trust and reputation

issues [1].

Design of Holonic Manufacturing Systems 19

Example 2: Robot fleets [7]

 One marked difference with manufacturing applications, for holonic task execution

control of multi-mobile-robot systems, the environment of the robots has to be included

explicitly as a (mostly aggregated) resource holon. The explicit representation and

allocation of environment resources facilitates the execution of coordination tasks.

 Without coordination, the mobile robots risk deadlock and live-lock situations. Indeed,

failure to explicitly manage resource allocation creates the need to enhance

this coordination-less system with a deadlock detection and roll-back functionality, which is

far from trivial even for a specific system configuration. Without a DMAS mechanism

generating predictions concerning the time and duration of resource (narrow corridor)

allocations, the mobile robots lack information to balance a longer route against waiting for

the resource to become available.

 Consider the case with an environment consisting of two rooms, upper room 1 and

lower room 2, connected by a narrow corridor (Fig. 4). Two autonomous wheelchairs,

SARA and INGA, are involved; SARA wants to go from 1 to 2, and INGA wants to go

simultaneously from 2 to 1.

a)

Fig. 4. The robots used in the experiments (a), examples of negotiating a common corridor without (b),

with coordination (c)

 SARA INGA LiAS

b)

c)

A Robot 1 B Robot 2

20 Hendrik Van BRUSSEL, Paul VALCKENAERS

The narrow corridor allows only one robot to pass at a single time, hence coordination

is required. Figure 4a shows a failed (A- B) and a successful run (C – D). In the failed run,

both wheelchairs entered the corridor almost simultaneously causing livelock.

The deviations in the successful run are caused by one robot avoiding the other

by the functioning of a built-in obstacle avoidance algorithm. In the experiment shown in

Figure 4b, the robots are aware of each other’s intentions by which they only enter

the corridor after the scheduler of the particular corridor resource has allocated to them

a valid slot. This way livelock or backtracking is avoided. Whenever a robot is not able to

enter a corridor yet, it waits in a transit zone in front of the corridor entrance to give way

to the arriving robot.

Figure 5 shows a slightly more complicated situation. Two wheelchairs, SARA (S) and

LiAS (G), are to move in opposite directions between two labs in the authors’ laboratory.

There is a mutually exclusive region where coordination is required. Fig. 5b shows the 3D

plot of the trajectories. The solid lines are the executed trajectories with respect to the time

and the dashed lines indicate the corresponding trajectory projected onto the environment.

The time dimension shows that LiAS, starting at the left, waits until SARA, at the right,

passes through the area where their trajectories overlap. The fact that the solid trajectories

do not intersect in Fig. 5b indicates that no collisions occurred.

Fig. 5. Two mobile robots coordinate their behaviour to avoid collision in the mutually exclusive region

a) top planar view, b) 3D view

a)

b)

Design of Holonic Manufacturing Systems 21

Example 3: Open Air Engineering [8]

Open air engineering processes, such as open-pit mining, road construction and

farming are mostly carried out with high-tech mobile equipment, including

self-propelled work vehicles such as excavators, dump trucks, asphalt layers, road graders,

combine harvesters, etc. that are specifically designed to carry out these processes (Fig. 6).

Fig. 6. Open air engineering processes

Open air engineering applications have some typical characteristics: (i)

the mobile equipment interacts with a (non-flat) 2D surface, the shape and properties

of which are modified by the equipment, (ii) material is either removed (harvesting, mining)

or deposited (asphalt depositing), (iii) some local storage might be available (e.g. on-board

combine harvester), (iv) material needs to be supplied/shipped from/to a production/

processing site (ore, corn).

Since the operations of this mobile equipment are expensive, profitability depends

directly on how effectively this equipment is utilised. Loss of production capacity is to be

avoided and minimised by proper coordination. Idling of the bottleneck resource(s) is

the key concern. Here, the coordination faces significant levels of uncertainty and variations

in working conditions, possibly shifting the bottleneck from the mobile equipment to

the transporters or vice versa.

The yield of the surface processing by the mobile equipment varies and is subject to

uncertainty in function of (i) surface properties (ore density, crop density, accessibility, …),

(ii) trajectory executed (accessibility and allowed trajectories of transporters).

Coordination needs to adapt to these varying and uncertain working conditions. But,

the coordination also impacts on these working conditions. The trajectory executed affects

how transporters may cross the surface to service the mobile equipment (e.g. trucks cannot

drive across a 1 meter steep slope created by the excavator, tractors must not drive over

still-to-be-harvested crops). Using information about the surface, the trajectory selection

affects the expected yield (e.g. crop density will vary across fields where historical data or

aerial photography may allow for good estimates).

Overall, coordination by HMES can make a difference. When the truck is delayed in

traffic, the mobile equipment shall be operated in an energy-saving mode, minimising losses

on the surface, tackling tricky parts of the surface, or perhaps performing small maintenance

tasks. When the site is near the processing unit or depot, the mobile equipment utilisation is

a priority and truck may have to wait when an optimised trajectory keeps the mobile

equipment out of reach until its reservoir is full/empty.

22 Hendrik Van BRUSSEL, Paul VALCKENAERS

The novelty in addressing this application domain was twofold. Chronologically, it

was among the first to require multi-resource allocation and, especially,

multi-resource allocation for which a leader-follower approach was ill-suited. In particular,

the assignment of transporters to activities on mobile equipment prompted the choice for

a resource pool holon, managing a collection of very similar resources.

Secondly, this application domain involved modelling surfaces as resources where

activities modify the surface properties and where surface properties determine resource

capabilities. For instance, a corn field surface will have initial location-dependent properties

based on historical information and measurements. When a combine starts to harvest,

properties of the processed parts of the surface need updating (e.g. indicating that tractors

may cross). Likewise, measurements by the harvesting equipment can be used to improve

the estimates for the unprocessed parts of the surface. DMAS mechanisms explore

the processing of these surface and, by propagating intension, predict the surface properties

in function of time. E.g. the exploring ants for a tractor may see which paths to

the harvesting equipment will be available when it arrives as well as the estimated position

of the mobile equipment.

Overall, coordinating open-air engineering processes involves multi-resource

allocation and trajectory determination. Using the DMAS mechanism, this coordination

aims to optimize one or more performance objectives, for example, bottle-neck utilization,

energy consumption, etc. In an open-air engineering process, the work vehicles perform

operations at geographically distributed locations (mine site, storage depot, grain fields,

etc.). Because of the open and distributed nature of open-air engineering processes,

disturbances and variations are highly prevalent in their operating environments.

In practice, plans are generated before the process starts, based on approximate

resource performance and predicted operating conditions. Although these plans provide

a good starting reference for execution, they are unable to provide

the necessary visibility for continued execution of the processes, which are subject to

uncertainty and variations. For effective execution, gaining visibility at runtime hence is

imperative. With more runtime information, it becomes easier to identify sources

of problems or opportunities and take effective decisions. This is what holonic execution

systems are designed to provide.

6. CONCLUDING REMARKS

Developers who want to ensure that their design is suited for integration without

control over what needs to be integrated with, are bound to design for the unexpected.

This can be achieved by developing, as much as possible, elements of a solution without

the need to rely on expectations. In order to avoid or minimize unstable constraints,

designers have to apply low-and-late-commitment in their design decisions.

The described reference architecture, called PROSA (and its generalisation ARTI),

enables the description of the structure of holonic (manufacturing) systems, and their

interactions. The formalism is scalable by its rigorous separation of concerns.

Design of Holonic Manufacturing Systems 23

The control dynamics (task execution) are ruled by the DMAS, with as most important

feature the ability of short-term forecasting, obtained by a decentralised virtual execution,

based on a digital mirror image of the world of interest that reflects reality at all times, as

a single source of truth. DMAS is scalable and provides robustness to the controlled system

in terms of adaptivity and scalability.

The universality and general applicability of the PROSA/ARTI/DMAS framework are

demonstrated with three case studies from manufacturing, robotics and open air

engineering.

To assess the unique power of the here developed framework, the reader is referred to

other parallel or similar research, the most representative of which are PRODUCTION

2000+ [10], XPRESS [11], ADACOR [12] and to the book by the authors ‘Design of the

unexpected’ [1].

ACKNOWLEDGEMENTS

The research described here spans a period of almost 30 years [1]. The authors are indebted to a large group

of dedicated researchers who participated and to the several European, national and regional research agencies for

their financial support.

REFERENCES

[1] VALCKENAERS P., VAN BRUSSEL H., 2016, Design for the unexpected. From holonic manufacturing systems

towards a humane mechatronics society, Elsevier.

[2] SUH N.P., 1997, Design of systems, Annals of the CIRP, 46/1, 75-80.

[3] JACKSON M., 1995. Software requirements and specifications, Addison-Wesley, Amsterdam.

[4] KOESTLER A., 1967, The ghost in the machine, The Macmillan Company.

[5] SIMON H.A., 1990, The sciences of the artificial, MIT Press, Cambridge, MA.

[6] SAINT GERMAIN B., VALCKENAERS P., VAN BRUSSEL H., VAN BELLE J., 2011, Networked

manufacturing control: an industrial case, CIRP Journal of Manufacturing Science and Technology, 4/3, 324-326.

[7] PHILIPS J., VALCKENAERS P., BRUYNINCKX H., VAN BRUSSEL H., 2012, Scalable and robust

coordination of multiple mobile robots using PROSA and delegate MAS. Proc. International Symposium on

Robotics (ISR), 527-532.

[8] ALI O., VALCKENAERS P., VAN BELLE J., SAINT GERMAIN B., VERSTRAETE P., VAN OUDHEUSDEN

D., 2013, Towards online planning for open-air engineering processes, Computers in Industry, 64/3, 242-251.

[9] HADELI, VALCKENAERS P., KOLLINGBAUM M., VAN BRUSSEL H., 2004, Multiagent coordination and

control using stigmergy, Comput. Ind., 53/1, 75-96.

[10] BUSSMANN S., JENNINGS N.R., Wooldridge, M., 2004, Multi-agent systems for manufacturing control: a

design methodology, In: Series on Agent Technology, Springer Verlag, Berlin, Germany.

[11] XPRESS, Flexible production experts for reconfigurable assembly technology, FP6-NMP Project n°26674, 2007-

2011.

[12] LEITÃO P., RESTIVO F., 2006, ADACOR: a holonic architecture for agile and adaptive manufacturing control,

Comput. Ind., 57/2, 121-130.

