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OPTIMIZED GRID STRUCTURES FOR THE CHARACTERISTIC DIAGRAM 

BASED ESTIMATION OF THERMO-ELASTIC TOOL CENTER POINT 

DISPLACEMENTS IN MACHINE TOOLS 

It is a well-known problem of milling machines, that waste heat from motors, friction effects on guides and also 

the milling process itself greatly affect the positioning accuracy and thus the production quality. An economic 

and energy-efficient method of correcting this thermo-elastic positioning error is to gather sensor data from  

the machine tool and the process and to use that information to predict and correct the resulting tool center point 

displacement using high dimensional characteristic diagrams. The size of these characteristic diagrams depends 

on the number of input variables (sensors) and the fineness of the discretization of the grid. While the number  

of sensors can usually not be reduced without affecting the quality of the prediction, it is often possible to 

minimize the size of characteristic diagrams through the use of adaptive grid refinement. This ensures that  

the finest grid sections correspond with the load cases that have the largest local gradients. Through such 

adaptive refinement, it is possible to reduce storage capacity and computation time without significant loss  

of precision. The aim of this article is to examine, test and compare different methods of adaptive grid 

refinement. For this, simulation data from a machine tool is used. 

1. INTRODUCTION 

Thermo-elastic machine tool deformation occurs during operation due to waste heat 

from motors and frictional heat from guides, joints and the cutting process, while coolants 

are used to reduce this influx of heat. Additional thermal influences come from the machine 

tool's environment and foundation. This leads to inhomogeneous, transient temperature 

fields within the machine tool which displace the tool center point (TCP) and thus reduce 

the production accuracy and finally the product quality. Active cooling can reduce this 

effect but does, however, require considerable amounts of energy. Another possibility is to 

stabilize temperature fields by allowing for lead-time or to limit the waste heat by using 

additional cooling, see [1].  
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This creates a conflict of objectives, since increasing productivity while maintaining 

quality increases the energy demand (cooling) and thus the production costs. Conversely,  

a reduction of the energy consumption usually reduces product quality or productivity.  

The Collaborative Research Centers/Transregio 96 (CRC/TR 96), a German Research 

Foundation (DFG) project, attempts to shift this balance between productivity, energy 

efficiency and product quality by reducing the impact of waste heat on the TCP positioning 

accuracy while reducing or even eliminating the need for lead-time, see [2]. This is done, 

eg., by correcting the TCP position through the prediction of its thermo-elastic displacement 

based on data gathered from various sensors and from the machine tool control. One such 

algorithm is the characteristic diagram based correction, which uses high-dimensional 

characteristic diagrams to directly map discrete points of the temperature field and  

the current axis configuration onto the resulting TCP displacement. Paper [3] explains  

the theory of thermo-elastic correction and demonstrates its effectiveness on  

a demonstration machine. 

Characteristic diagrams can theoretically be created with an arbitrary number of input 

variables but with each additional variable the dimension of the resulting problem increases 

exponentially. Therefore it is necessary to: 

- limit the number of input variables, 

- limit the discretization fineness of each variable, 

- use efficient solvers (for the resulting linear systems), 

- use efficient, problem-specific grid structuring. 

Despite the power of current computers, increasing sizes of working memory and  

the use of graphics processing units for faster computation, solving very large linear systems 

is still challenging. More problematic still, is that the online-application of characteristic 

diagram based correction on a machine tool control places tight limits on the size  

of the characteristic diagram and the time available for calculating the correction values. 

That is why it is essential to make the characteristic diagram grids only as large as 

absolutely necessary. The number of input variables can be reduced by selecting only the 

most sensitive points of the temperature field as inputs. This can be done with a sensitivity 

analysis (SA), as described in [4]. The SA chooses the temperature inputs from the FE 

nodes of the model in such a way that the influence of the temperature of the next node on 

the TCP displacement is as large as possible while that node’s temperature is also mostly 

independent of that of all previously chosen nodes. 

The necessary fineness of the discretization of each variable depends on both  

the nature of the physical dependency of that variable on the output (e.g. TCP displacement) 

and the grid structure used. Since this is therefore not an isolated problem, it will be 

discussed later in the sections dealing with grid structures and adaptive grid refinement. 

Large characteristic diagrams are almost always sparsely filled because either  

the available data or the time to gather data through measurements or simulations is limited. 

Likewise the coefficient matrix of the resulting linear system will be sparse. Unfortunately 

this matrix fills rapidly if a direct solver is applied. This fill-in slows down computation and 

requires large amounts of memory. In addition, it is usually inefficient to fill a sparse matrix 

due to its compressed storage method. Therefore an efficient iterative solver would be 

preferable. In most cases, iterative solvers only perform well if the matrices are properly 
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preconditioned [5]. Paper [6] compares different iterative solvers and explains how 

characteristic diagram based correction can be achieved with an FEM based approach (see 

Chapter 2) that allows the employment of efficient preconditioned multigrid solvers. 

Grid structuring is a complex topic. There is rarely ever the one optimal grid for any 

given problem. Different methods of grid structuring, such as equidistant, variable, 

transformed, substructured and sparse grids will be described in chapter 3. Along with  

a description of their construction and optimization, some advantages and disadvantages 

will be discussed. As can be expected, the grid structures that allow the greatest adaptivity 

can achieve any given accuracy with the least number of grid vertices. Chapter 4 explains 

the use of adaptive grid refinement in the context of characteristic diagram based correction. 

For this, suitable choices of error estimators will be given, along with advice on the proper 

insertion of additional nodes into the grid. This will demonstrate that while substructured 

grids usually make the most efficient use of grid nodes, they are also the most complex in 

their implementation, optimization and usage. Another problem connected to adaptivity is 

the risk of overfitting. Chapter 6 therefore compares the different grid structures by 

evaluating their performance in a sample application. This application is a machine tool 

column with a moving spindle slide which is described in chapter 5. Thermo-elastic 

simulations of this column are used to generate training and test datasets for the evaluation 

of each grid structure.  

2. CHARACTERISTIC DIAGRAM BASED CORRECTION 

CHARACTERISTIC DIAGRAMS are continuous maps of a set of input variables 

onto a single output variable. They consist of a rectangular grid of support points along with 

kernel functions which describe the interpolation in between. Equation 1 shows  

a one-dimensional linear kernel )( ij TK  between two support points 
jT̂  and 

1
ˆ
jT  which 

depends on a temperature iT (compare Fig. 1) 
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Characteristic diagrams are created by first discretizing each input variable in order to 

establish the grid, then choosing a type of kernel function adequate for describing the local 

dependency of the input variables on the output variable and finally calculating  

the parameters of the kernel functions for each support point based on training data from 

simulations or experiments, see [7]. The most common form of characteristic diagram uses 

multilinear interpolation between support points, where a scalar factor jr equal to the output 

value at the support point acts as a weight multiplied to the pyramid shaped kernel jK . 
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Fig. 1. 1D linear characteristic diagram interpolation 

These higher dimensional kernels can be created by simply multiplying  

one-dimensional kernels. A more detailed account of characteristic diagrams and how they 

are calculated can be found in [8]. Here Priber describes a method called “Smoothed Grid 

Regression” (SGR) which adds smoothing terms to the data fitting terms described above in 

order to fit sparse or defective data. SGR is the basis for the characteristic diagram research 

presented here. 

In the course of the CRC/TR 96 project, improvements to the characteristic diagram 

computation were achieved by employing multigrid solvers to efficiently solve the large 

sparse linear systems of high dimensional characteristic diagrams. This was done by 

developing a partial differential equation (PDE) that mimicked the common approach (s. eq. 

1 and 2) and using it to derive the linear system via the finite element method (FEM).  

For piecewise multilinear kernels, this PDE in weak form reads: 
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The equation comprises a data fitting term plus a smoothing term. Its derivation along 

with a more detailed explanation can be found in [2], under chapter “Correction Algorithms 

and High-Dimensional Characteristic Diagrams”. Where the common approach is limited to 

only 5 or 6 input variables due to limited memory, this new iterative solver can cope with 10 

or more variables, as was shown in [6] using simulation data from a machine tool column. 

This development is of paramount importance when complex machine tool structures are to 

be modelled. 

Many trials have shown that multilinear interpolation, given a fine enough grid, is best 

suited for the thermo-elastic problems in machine tools. Not only are they sufficiently 

accurate and easy to calculate, they also require comparatively few parameters and limit  

the risk of overfitting, see [6]. It was therefore used in the studies described in Chapter 6. 

Nevertheless other, more complex kernels such as B-splines or wavelets can also be 

combined with the various grid types described below. 

3. METHODS OF GRID STRUCTURING 

This chapter will introduce a number of different grid structuring techniques. Starting 

from simple equidistant grids, more complex grid structures will be derived until finally 
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adaptive grids are discussed. All grid structures will be briefly described and evaluated in 

the context of their use in characteristic diagrams. A performance evaluation for thermo-

elastic problems will be given in chapter 6. 

3.1. EQUIDISTANT GRIDS 

Equidistant grids present the simplest form of grid structures. Every grid axis is 

subdivided into equidistant intervals. The number of intervals in each dimension depends on 

the variability and the strength of the influence that the corresponding input variable has on 

the output variable. For many temperature variables describing the local expansion  

of a section of a machine tool such simple equidistant grids are, e.g., quite adequate. Their 

greatest advantage is their simplicity, which allows their implementation, calculation and 

real-time use with little effort. Equidistant grids are also very useful in combination with  

the FEM-based correction approach introduced in Chapter 2. By using 2
n
 intervals, it is easy 

to create the hierarchical grid needed for the multigrid solver. Equidistant grids are  

the largest grids in terms of the number of grid points and will therefore be used here as 

reference to measure the other sparser grid structures’ performance.  

3.2. GRIDS WITH VARIABLE INTERVALS 

As with equidistant grids, all grid subdivisions are done on the individual axes.  

The difference is that now all intervals can vary in size. This allows greater variability 

depending on the states of individual input variables. An example could be the dependency 

of the vertical position of the spindle on the TCP displacement which is almost zero at  

the bottom and increases superlinearly towards the top. If done properly, variable grids will 

usually achieve better results than equidistant ones, even with the same number of grid 

points. The problem is that it is usually difficult to find the optimal grid intervals.  

In addition, the use of variably spaced grids requires a bit more effort because for any new 

measured data point the containing grid hypercube must be searched for. 

Literature studies have not yet revealed an algorithm that will reliably compute  

the optimal variable grid for a given database. A simple iterative algorithm could work as 

follows: 

1. Start with a coarse equidistant grid. 

2. Increase the fineness of the equidistant grid until the approximation quality suffices 

(error < ) or the computation effort exceeds a certain limit. 

3. Shift the grid axis interval boundaries until no further improvement of the 

approximation quality greater than  is possible. To do so, repeat the following steps: 

- Compute the maximum (or average) approximation error for each grid axis 

interval, 

- Find the two grid axis intervals that have the greatest difference in their respective 

approximation error, 



Optimized Grid Structures for the Characteristic Diagram Based Estimation of Thermo-Elastic Tool Center Point…  41 

 

- Move the boundary between the two intervals towards the one with larger error by 

% of its interval length. 

4. Is the solution of step 3 significantly worse than the previous solution? 

- YES: BREAK. Keep the previous solution and its corresponding grid. 

- NO: Compute the maximum (or average) regularisation (smoothness) error for 

each grid axis vertex. Remove the grid axis vertex with the smallest regularisation 

error. GO TO 3. 

This algorithm requires computing a new characteristic diagram for each new grid 

structure. Even though this process is done offline and does therefore not affect the online 

correction, it can become very time consuming for large grids. Nevertheless, it has yielded 

good results in the computational tests described in chapter 6. 

3.3. TRANSFORMED GRIDS 

One very effective way of transforming a rectangular grid is through principal 

component analysis (PCA). It minimizes dependencies between the input variables by 

rotating the grids. A detailed description of the PCA can be found in [9]. Characteristic 

diagram grids are large hypercuboids created from the discretization of input variables.  

In practical applications it is often the case that some of the corners of this hypercube 

correspond to system states that are not relevant. For two neighbouring temperature sensors 

on a machine tool, e.g., one will never be very cold while the other is very hot. Rotating  

the grid using PCA allows cutting off these corners in order to preserve the limited number 

grid vertices for the grid sections that truly matter. 

PCA computes the desired rotation (coefficient matrix) directly from the input data 

matrix by solving a small eigenvalue problem of the size of the input dimension. After  

the rotation has been applied to the input data, the grid is created with any of the structures 

listed in this chapter. The PCA also returns an indicator of the significance of each grid axis 

after the transformation. If this indicator is very low, hinting at a strong linear dependence in 

the input variables, then the grid dimension with the lowest significance can be omitted 

without affecting the characteristic diagram quality.  

PCA can therefore be viewed as pre-processing step. It is a simple way of reducing  

the grid size with very little effort and without losing the advantages that the other grid 

structures offer. The only disadvantage is that it makes the interpretation of the 

characteristic diagram more difficult. This is, however, usually a moot point because the 

interpretation of any high-dimensional characteristic diagram is nearly impossible anyway. 

3.4. GRIDS WITH SUBSTRUCTURES 

Substructures can be added to any of the above grid structures. This is done by 

choosing a grid hypercube, usually one with a large approximation error, and subdividing it 

into smaller hypercuboids. This subdivision can once again be done with equidistant or 

variable intervals (see sections above). The most common form of substructure is created by 
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splitting the hypercuboids in half, in some or all dimensions. If some of these new, smaller 

hypercuboids still produce a large error, they can be divided once more. This process is 

usually repeated until the local fineness of the grid matches the local variability of the 

function that is to be approximated. Such a sequence of bisections is often referred to as  

an octree, derived from the tree structures commonly used to construct them. 

An example of when such substructures are useful can also be derived from the sample 

application in chapter 5. The temperature sensors at the top of the machine tool column have 

a large impact on the TCP displacement, but only if the spindle is in the upper half of the 

column. A fine discretization of these temperature variables in the lower spindle positions 

would therefore be a waste of precious grid vertices. This form of adaptivity can only be 

achieved with the substructures described in this section or the sparse grids from  

the following section. 

The main advantage of grid substructures is the highly localized grid fineness which 

can be precisely tailored to the given application. The approximation error based refinement 

is simple, effective and arrives at the optimal grid in only a few iterations. The cost of this is 

the increasing complexity of the characteristic diagram computation and usage. One such 

complication is that an effective method of grid storage is required. Such a method needs to 

be easy to use in the implementation of the characteristic diagram method, it needs to allow 

easy determination of the grid hypercube belonging to a given data point and it needs to 

permit efficient solving of the resulting linear system. The latter requirement is due to fact 

that the order in which grid vertices are indexed has a great influence on the convergence 

behaviour of iterative solvers. Another complication is the fact that substructures lead to 

irregular triangulations which require a slightly different interpolation approach. In paper 

[10] an octree structure is used to solve PDEs on hypersurfaces with local refinement. It also 

demonstrates that optimal convergence can be achieved for irregular triangulations.  

3.5. SPARSE (HIERARCHICAL) GRIDS 

Sparse grids are derived from hierarchical grid structures. Hierarchical grids consist  

of overlapping grid layers where each subsequent layer is finer than the previous one. 

Figure 2 shows a complete hierarchical grid in 2D which is created via the tensor product  

of hierarchical subspaces Wij as described in [11]. The number of grid points for such  

a complete grid is (2
n
 – 1)

d
, with d the dimension and n the level of the grid. The grid in 

Fig. 2 thus contains (2
3
 – 1)

2
 = 7

2
 = 49 grid points. 

Sparse grids are based on the same principle, but they push certain subspaces onto 

higher grid levels. Compared to a full hierarchical grid of the same level, these subspaces 

are omitted and thereby the density of the grid reduced. As before, the selection of which 

subspaces are added on each subsequent level is determined by the approximation error.  

An example of such a sparse grid can be seen in Fig. 3, where the grid level is once again 3, 

but the number of grid points is now only  

 2𝑖
𝑛

𝑖=1

∙  
𝑑 − 1 + 𝑖
𝑑 − 1

 = 17. 
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Fig. 2. Complete hierarchical grid in 2D [11] 

 

Fig. 3. Sample sparse hierarchical grid in 2D [11] 

For a large number of problems, increasing the precision of the solution requires 

higher grid levels. Since increasing grid levels cause an exponential increase in the number 

of grid points, the complexity of the problem rises accordingly. The purpose of sparse grids 

is to limit the number of grid points added with each refinement while still obtaining  

the desired improvement of the solution. Paper [12] demonstrates how this reduction in 

complexity can be achieved without significant loss of precision for a number of sample 

applications. 

As with the grid substructures, sparse grids can be precisely adapted to the local 

complexity of a given approximation problem and here too does this come at the cost  

of more complicated algorithms for the implementation, calculation and utilization  

of the resulting characteristic diagrams. 
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4. ADAPTIVE GRID REFINEMENT 

Adaptive grid refinement can be a useful tool to either increase the accuracy of an 

approximation or reduce the problem size for a given approximation error. The way it is 

conducted depends heavily on the type of grid used and the problem to be solved. The most 

important issues to resolve in order to use adaptive grid refinement are: 

- defining an error estimator, 

- determining how the grid elements are subdivided, 

- creating an efficient way to store and access the grid nodes and their values, 

- adjusting assembler and solver to cope with new grid elements and nodes. 

Defining an error estimator for smooth characteristic diagrams (SGR) is relatively 

straight forward. The SGR is created by minimizing the data approximation error and  

the smoothness error at the same time [7]. The adaptive grid refinement can therefore use 

either error or both to decide which grid elements to refine. In this investigation  

a combination of both data error and smoothness error has yielded the best results. As soon 

as the current solution has been calculated, the error is estimated for each element (or node) 

and then all nodes with an error above a predetermined threshold are refined. 

Determining how to subdivide existing elements of a grid depends largely on the grid 

element type. Many three-dimensional FE grids use tetrahedral elements which are very 

easy to split. One only needs to place a new node inside an existing tetrahedron and connect 

this new node to all of its vertices to get four new tetrahedra. For the rectangular grids used 

for characteristic diagrams, the division is more complicated. The easiest way is to bisect 

the hypercuboid in each dimension, e.g. in 2D a rectangle becomes four new, equally large 

rectangles. Splitting the hypercuboid anywhere other than in the middle, splitting it into 

more than two parts or splitting it in only some dimensions would force the neighbouring 

elements to share that method if they too are split and is therefore generally avoided.  

 
Fig. 4. Simple 2D adaptive grid with hanging node (red dot) 

Figure 4 shows a simple 2D grid with a local refinement and already hints at  

the problem it creates. The newly refined grid is now a so called irregular triangulation 

because it contains a “hanging node” (red dot) that touches its neighbouring element (blue 

rectangle) on an edge rather than a vertex. There are two easy ways to resolve this. The first 

is to continue the bisection in each direction until the limits of the grid are reached.  

This method is simple and allows refining grid elements in selected dimensions. It is, 

however, impractical if the grid has a high dimension and a large number of grid vertices on 

each grid axis, because then each subdivision creates a lot of new grid elements of which 

most have little impact on the error. The second and better solution is to add restrictions to 
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the hanging nodes. For multilinear interpolation one can add the requirement for  

the intersecting node to have half the value of the sum of the nodes whose edge it intersects:  

 

 

Efficient data structures for characteristic diagrams are generally relatively simple to 

come by, due to their rectangular grids. Equidistant grids, e.g., only need the coordinates  

of one node, and both the grid interval length and the number of intervals in each 

dimension. Variable grids only need one grid axis vector per dimension to fully describe  

the grid. For grids with local refinement it is somewhat more complicated. Paper [13] 

describes an efficient data structure for adaptive triangular grids. It uses just the node and 

element matrices for the mesh and creates any auxiliary structures as they become 

necessary. For this investigation recursive data structures analogous to binary trees were 

used. Paper [11] uses similar structures with sparse grids. 

Adjusting the assembler and solver to adaptive grids can likewise be challenging.  

This is mainly due to the hanging nodes described above. For the SGR method, as described 

in [7] and [8], the adjustment to the assembler simply requires adding one new data equation 

for each new grid point added through refinement. Refining a hypercuboid will create one 

new degree of freedom in the middle plus additional free vertices if neighboring vertices are 

also refined or the hypercube is on an outer hypersurface of the grid. Since this distinctions 

can be difficult to make for high-dimensional grids, an alternative is to create as many new 

vertices as possible and restrict those bound by coarser neighboring elements using 

additional smoothing equations with large weights, see [7]. Many direct and some iterative 

solvers will then solve the resulting linear system like that of an unrefined grid. The FEM 

based approach described in [6] becomes more complicated if hanging nodes are introduced. 

Paper [14] explains how hanging nodes can be handled for quadrilateral meshes and 

examines the resulting convergence. If adaptive refinement is used in combination with  

a multigrid solver, then the restriction operator will simply undo the last refinement steps to 

obtain its approximation for the solution on the fine grid, see [6]. 

Note that this section only described the so called “h-refinement” which uses grid 

element splitting to achieve adaptivity. There is also “r-refinement” which moves grid 

vertices and “p-refinement” which alters the kernel functions (e.g. polynomials of higher 

degree). Both of these refinement strategies can also be applied to the SGR method.  

The variable grids described in chapter 3b can, e.g., be considered an r-refinement. Previous 

investigations into the usage of polynomial kernel functions in the SGR have shown  

that multilinear kernels (usually with a slightly finer grid) are superior to higher-degree 

polynomial kernels because they are simpler to use and less prone to overfitting in large 

sparsely filled grids. 

5. SAMPLE APPLICATION FOR GRID EVALUATION 

The chosen sample application for the evaluation of the described grid structures is  

a simulation model of a machine tool column including the slide that would hold the spindle 

in a horizontal machining center. The thermo-elastic deformation of this assembly has 
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a large impact on the TCP displacement. Figure 5 (left) shows a CAD-model of column and 

slide. In order to efficiently model the movement of slide on column and the moving 

frictional heat source it represents, the column was subdivided into 15 segments so  

that the slide is always in contact with at least 3 of the segments. This results in 11 discrete 

vertical positions between which linear interpolation can be applied. 

 
Fig. 5. CAD- and FE-model of machine tool column and spindle slide [15] 

Figure 5 (right) shows the vertical segments and the FE-mesh of the components.  

The variables ui therein indicate the locations of heat transfer. In addition, the model 

considers free convection and a vertical gradient of the surrounding air temperature. Forced 

convection which can have a significant effect for fast slide movements was neglected 

because it would require CFD simulations to determine the transient heat transfer 

coefficients.  

 
Fig. 6. Locations of virtual temperature sensors [15] 
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In order to ensure swift and accurate calculation of the temperature fields for  

the moving heat source, model order reduction was applied, as described in [13]. While  

the simplifications made in this scenario might limit the accuracy of the simulated 

temperature fields, they do not significantly affect the resulting characteristic diagrams. This 

is owed to the fact that these characteristic diagrams only imitate the mapping  

of temperature fields onto their respective deformations, which only depends on the 

correctness of the CAD model and its material parameters. 

Figure 6 shows the locations of the virtual temperature sensors used to create  

the characteristic diagrams tested in the next chapter. These positions were not optimized by 

sensitivity analysis but rather chosen with the intention of creating diversity. 

6. COMPARISON OF GRID STRUCTURING TECHNIQUES 

Chapter 3 lists equidistant, variably spaced, transformed, substructured and sparse 

grids as the most common grid types for characteristic diagrams. Of these, substructured 

grids offer the greatest level of adaptivity and have therefore got the greatest potential for 

producing minimal grids. Sparse grids are basically just another kind of substructured grid 

and therefore not separately investigated. One problem with substructured grids is that they 

are far more complicated in their implementation, usage and optimization than many of the 

simpler grid structures. Most of this effort must, however, only be done once before 

adaptive grid structures are readily usable. More problematic is the fact that any local 

adaptivity risks overfitting. The risk of overfitting is especially great if: 

- the training data contains errors, 

- the training data is too sparse, 

- the grid has too few input variables to fully represent the output, 

- the kernels are fast-growing functions (e.g. higher-order polynomials / B-splines), 

- the smoothing equations’ weights are too small compared to the data fitting weights. 

Overfitting leads to larger errors in the estimation and can therefore make larger grids 

less effective than smaller ones. To summarize, more rigid grid structures, like equidistant 

grids, require more grid vertices but are less vulnerable to overfitting, while adaptive grid 

structures are much smaller at the cost of a greater risk of overfitting. 

Using the simulations described in chapter 5, the various grid structures will now be 

evaluated and compared in order to gage their suitability for thermo-elastic problems. 

The simulation moved the spindle slide up and down with random motion profiles and  

a smoothly fluctuating heat source of up to 200W. For each test, one long sequence  

of heating and cooling cycles was simulated to generate data to train the characteristic 

diagrams and then another, shorter sequence was simulated to test them. In order to keep  

the time required for the grid optimization and the testing of different grid sizes manageable, 

only the first 4 temperature inputs were used for the grids and the maximum grid sizes were 

kept relatively small. An example of such a simulation for testing an equidistant 

characteristic diagram is shown in Fig. 7. The sequence of training and testing characteristic 

diagrams with different grids was done with five different simulations for each grid type in 

order to create some statistical reliability. 
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Fig. 7. Sample simulation data for characteristic diagram test with a corresponding estimation 

For every tested grid (and thus every step of the grid optimization) the training data 

was randomly split into three equal sets, of which two were used for training and one for 

testing. For all three combinations of test and training sets, estimations were computed and 

their errors averaged. Depending on whether the recently tested grid performed better than 

the previous one, grid optimization (refinement) would continue. Finally, the data from  

the training simulation was used to test the last, finest grid after optimization was complete. 

The results of these grid evaluations are shown in Fig. 8. 

 

        

Fig. 8. Comparison of estimation error of thermal TCP displacement for training data (left) and test data (right) 

The left chart shows the average absolute estimation error of the training data and  

the right chart that of the test data. The average absolute estimation error works better as  

an indicator of the grid quality than the maximum absolute estimation error because it is less 

susceptible to stochastic errors and thus enables a fairer comparison of the grid structures.  
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In this investigation, the estimation of training data can be compared to estimating error-free 

data which densely covers the grid structure. Under these circumstances overfitting is not  

an issue and thus adaptive grids are at an advantage. The estimation of the test data 

compares to the more realistic scenario where the data is limited and contains errors. Here, 

overfitting is a great problem so that finer grids are not always better than coarse ones and 

rigid grid structures often perform better than adaptive ones. 

The following conclusions can be drawn from the charts in Fig. 8: 

- PCA shows no significant improvement over untransformed grids, 

- Substructured grids are slightly better at estimating training data, 

- Substructured grids are more susceptible to overfitting test data, 

- Coarse grids are most often better at fitting test data (overfitting), 

- Equidistant and variably spaced grids perform similarly well, 

- Four temperature sensors can already reduce the average thermal error from over 

50µm to less than 5µm. 

The most important lessons to be learned from these simulations is that the simplest 

grids often produce the best results and that grid optimization in the manner described in 

chapter 3 should not be done with limited or erroneous training data. 

7. CONCLUSION  

The paper builds on previous research on the characteristic diagram based correction 

of thermo-elastic tool center point displacements. After outlining the problem of thermo-

elastic deformations in machine tools, the state of the art in characteristic diagram based 

correction is presented. Following this, equidistant, variably spaced, transformed, 

substructured and sparse grid structures are introduced and the implications of their usage in 

characteristic diagram based correction are discussed. The problems arising with the usage 

of adaptive grid refinement, such as irregular triangulations and efficient memory structures 

are discussed and solutions presented. A simulation model of a machine tool column with  

a moveable spindle slide is presented as a sample application to demonstrate and test  

the effectiveness of each of the aforementioned grids. The performed simulations have 

shown that adaptive grids are very efficient under ideal conditions but susceptible to 

overfitting if the training data is limited or erroneous. In these cases coarse, rigid grid 

structures are most reliable. Grid transformations using principal component analysis has no 

significant effect on the estimation quality. Across all grid types, characteristic diagram 

based estimation of thermal displacements has yielded good results with only four 

temperature inputs.  
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