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MACHINE LEARNING IN SMED  

The paper discusses Single Minute Exchange of Die (SMED) and machine learning methods, such as neural 

networks and a decision tree. SMED is one of lean production methods for reducing waste in the manufacturing 

process, which helps to reorganize a conversion of the manufacturing process from current to the next product. 

SMED needs set-up activity analyses, which include activity classification, working time measurement and work 

improvement. The analyses presented in the article are focused on selecting the time measurement method useful 

from the SMED perspective. Time measurement methods and their comparison are presented in the paper. Machine 

learning methods are used to suggest the method of time measurement which should be applied in a particular case 

of workstation reorganization. A training set is developed and an example of classification is presented. Time and 

motion study is one of important methods of estimating machine changeover time. In the field of time study, 

researchers present the obtained results by using (linear) multi-linear regression models (MLR), and (non-linear) 

multi-layer perceptrons (MLP). The presented approach is particularly important for the enterprises which offer 

make-to-order products. Development of the SMED method can influence manufacturing cost reduction  

of customized products. In variety oriented manufacturing, SMED supports flexibility and adaptability  

of the manufacturing system.  

1. INTRODUCTION 

The manufacturing process is constantly changing. Products are offered in many 

variants prepared according to customer requirements. Researchers, e.g. Gorski et.al. [1] 

discuss configurable products manufacturing process and notice that “a measure of flexibility 

of a manufacturing system is its capability of performing various tasks, as well as time at 

which it can be prepared for a new task (the shorter the better)”. Product configuration 

according to customer needs requires production process flexibility which allows it to use 

intelligent techniques supporting data analysis in enterprises in different fields of application. 

Application of intelligent techniques has been considered by many authors, e.g. by Uhlmann 

et. al. [2], who discuss intelligent production systems. Jedrzejewski et al. [3] discuss 

intelligent function in diagnosing machine tools.  

Production process flexibility can be supported by SMED, which reduces changeover 

time. SMED can be supported by intelligent methods, such as NN and the graph theory, in 

setting changeover time standard. 
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2. REDUCING CHANGEOVER TIME - THE SMED APPROACH 

 Changeover time is defined as the period between the last good product from previous 

production order leaving the machine and the first good product coming out from  

the following production order [4-6]. Goubergen et al. [7] indicated three main reasons why 

changeover time reduction initiatives can be appropriate for any company:  

 to increase flexibility by conducting more changeovers and reducing lot size;  

 to increase bottleneck capacities in order to maximize line availability for production, 

and  

 to minimize the cost, since production costs are related to equipment effectiveness [6]. 

SMED needs set-up activity analyses, which include:  

 activity classification,  

 time standard setting, and  

 work improvement.  

Shingo claimed that SMED is a scientific approach to set-up time reduction that can be 

applied in any factory to any machine. Shingo [8] bases his method on categorizing all 

set-up activities into internal and external ones, with internal activities being the ones that can 

be performed only when the machine is shut down, and external being those that can be 

conducted during normal machine operation, when it is still running. These internal and 

external set-up activities involve different operations, such as preparation, after-process 

adjustment, checking materials, mounting and removing tools, settings and calibrations, 

measurements, trial runs, adjustments, etc. SMED is composed of the following stages [8]: 

 description of set-up conditions, where internal and external activities are not 

distinguished;  

 separating internal and external set-up;  

 converting internal activities into external ones; 

 streamlining all aspects of the set-up operation [6]. 

SMED’s main benefits include:  

 increasing manufacturing capacity,  

 improving equipment flexibility [5]. 

3. SETTING TIME STANDARD IN SMED 

One of the important stages in the SMED method is setting changeover time standard. 

According to the Pareto analysis, it is possible to find main set-up activities which are 

responsible for long changeover time standard. Changeover activities mainly involve manual 

assembly and disassembly processing, so development of time standard setting methods 

focused on human motions is the aim of this article.  

Standard time obtained as a result of applying a work measurement technique is defined 

as a sum of basic time and allowance time. Standard time is calculated for  

a manufacturing task which is performed using given method and equipment, under given 

conditions, by a worker with sufficient skills to do the job properly, by a worker who is 
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physically fit for the job after adjusting to it, who is an average person who can perform  

the job, working at the pace of an approved pace standard [9]. According to [10], work 

measurement techniques include:  

 time studies (recording and evaluation of actual times),  

 calculation techniques using technological formulae as an aid,  

 synthetic times,  

 comparative estimation,  

 subjective estimation.  

The synthetic times technique uses time standards for defined work contents. 

Predetermined motion time systems, such as the family of MTM techniques and Work Factor, 

use time standards for separate human motions. The basic MTM-1 system offers  

a very detailed description of the working method, but it takes a long time to perform  

an analysis of a work cycle [9]. Several variants of MTM can be used, among which  

MTM-UAS is useful for manual processes that average around 1-3 minutes [11]. Chosen 

MTM systems are presented in Fig. 1 [12]. 

 
Fig. 1. Chosen MTM systems 

MTM is a tool used to describe manufacturing operations to standardize the work 

method and optimise it [13]. Several computer software applications have been developed, 

such as MOST (Maynard Operation Sequence Technique), or TICON, which are useful in 

MTM (M-1, MTM-2, UAS, MEK, MOS) [12, 14].  

A work process can be divided into sub-processes, which need evaluating the motions 

necessary to complete a work task. An example of hand motion analysis was presented on 

Fig. 2, which was developed basing on Bramley et al. [15], who present production planning 

state of art. In the presented example, hand motion was divided into activities which lead to 

completing a work task.  

One of the methods useful in manual process analysis is MTM, in which work planning 

requires a definition of a sub-processes’ sequence. A work task can be analysed as a hand, 

body and eye motion sequence. According to MTM, basic human hand motions include: 

reaching, grasping, moving, positioning, releasing. A motion needs to be planned, taking into 

consideration the ways in which an object may be handled. 
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Fig. 2. An example of a sub-processes flow chart 

The time required for a motion depends on a number of variables, such as, for example, 

distance or weight. In the proposed approach, basic motions are grouped into sets. The activity 

of “picking up an object” was analysed, and in the proposed approach, basic motions, such as 

reaching, grasping and moving were joined together, and next, common characteristic 

features (attributes) were found. In case of changeover activity time standard setting, MTM 

is too complicated and time consuming, so it is necessary to develop an approach which is 

fast and easy to use.  

4. ANN APPLICATION FOR SETTING TIME STANDARD OF HUMAN MOTIONS 

4.1. DATA ACQUISITION AND PRE-PROCESSING 

Data acquisition is focused on obtaining training, testing and validation data sets  

[16, 17]. A model of data acquisition was presented in Fig. 3. The model features  

the relations between basic motions and standard operations, which were analysed by Yang 

et al. [18].  

 

Fig. 3. A time standard data acquisition model 
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In the presented approach, time standard for the “picking-up” activity was calculated as 

a collective time of reaching, grasping and moving. The attributes which characterise  

the “picking-up” activity are related to the workpiece characteristics, as well as workstation 

characteristics. Data pre-processing is presented in Fig. 4.  

Fig. 4. A model of manual assembly time standard pre-processing 

4.2. ANN CHANGEOVER TIME STANDARD MODELLING 

AI technologies can include, e.g.: knowledge base, fuzzy logic, decision trees, as well 

as neural networks [19-21]. AI application for changeover planning needs feature modelling 

useful in automation of experience based reasoning. Feature (attributes) analysis and 

conversion is an essential element for AI application. In the proposed approach,  

the changeover process is represented by the object-attribute-value (OAV) scheme, in which 

an object is associated with a set of attributes and each attribute is described by appropriate 

values. Figure 5 presents the relations between the analysed data structure elements.  

The OAV scheme gives a concise data structure for organising the features of a chosen 

process [22].  

Various researchers have applied ANN as a tool for time prediction. Multi-layer 

perceptron (MLP) and radial basis functions (RBF) were used for predicting execution times 

of production tasks by Fernandez et al. [23]. A hybrid approach involving a self-organization 

map and fuzzy back propagation network were proposed for cycle time prediction by Chen  

et al. [24-26]. Processing time and reliability ratio were predicted with the use of linear  

ANN [27]. 

ANN is an interconnected group of artificial neurons which have a property of storing 

knowledge and making it available for use [28]. Studies on machine learning have mainly 

been concerned with automatic learning from examples, which allow to develop  

the knowledge [29-32]. The most widely studied supervised learning method is feedforward 
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neural network, in which a model is refined during the learning process [29]. MLP training, 

which is a class of feedforward neural network, is focused on minimizing the error between 

the training data set and the corresponding MLP network output by finding optimum values 

for the weights assigned to the neural connections [17]. 

Type of 
basic motion

Object

Distance

Attributes Value

.....

Size

2 cm

4 cm

.....
 

Fig. 5. Object attributes value scheme 

ANN is established with the use of a set of training samples, including attributes and 

their values. The training examples can be generated by simulations or by a real production 

system. In the presented approach, the ANN training set contains time standards of human 

motions achieved with the use of MTM-1. MLP is one of well-known artificial neural 

networks used, among others, for classification and regression [22]. MLP consists of one or 

more hidden layers of neurons. A multi-variable regression MLP model of a given process is 

built with a chosen number of input and output neurons and neurons in hidden layers.  

The MLP approach presented in the article involves learning time standard as a network 

output and work characteristic as an ANN input. The attributes considered as the ANN input 

in the work process characteristics are: workpiece weight, workpiece size, workpiece reach 

distance, workpiece move distance, workpiece way of feeding.  

An ANN model needs decisions related to:  

 Number of input neurons;  

 Number of output neurons; 

 Type of input values;  

 Type of output values; 

 Number of hidden layers; 

 Number of neurons in the hidden layers; 

 Type of neurons; 

 Training method; 

 Number of examples in the training, testing and validation sets; 

 Nature of examples in the training, testing and validation sets. 

The number of ANN inputs can be established with the use of sensitivity analysis, which 

indicates the error and regression ratio caused by removing a given ANN input.  
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A number of neurons in the hidden layer must be large enough to form a decision region 

that is as complex as required by the given problem [33]. A wrong decision related to an ANN 

model (irrelevant inputs, too many hidden layers or neurons, insufficient amount of training 

data, etc.) can cause ANN overfitting and deteriorates generalisation capability [29].  

In the proposed approach, a chosen human activity was modelled with the use of ANN. 

The case study was dedicated to modelling time standard for the “picking-up” activity  

with ANN.  

4.3. CASE STUDY 

Changeover task planning requires human motions analyses, so in the presented 

approach work time is calculated with elementary human motions and their standard times, 

according to the model presented in Fig. 4. A set of examples (274 cases) presented in Table 1 

was divided into training, testing and verification sets.  

Table 1. A set of examples 

ANN Inputs ANN Output  

No. Weight Size Distance - reach Distance - move Time standard  

1 1 >12 2 2 11.3 

2 10 >12 80 80 81.3 

3 20 >12 2 2 27.1 

… … … … … … 

274 20 >12 80 80 96.6 

In the presented approach the Statistica software was used. Sensitivity analysis was 

conducted and the most important attributes were found. The results of the sensitivity analysis 

for training and verification sets were presented in Table 2. As a result of the sensitivity 

analysis, three important attributes were established: the first one is “move distance” with 

training set error of 9.196858 and regression ratio of 7.299076; the second is “reach distance”, 

with training set error of 7.956422 and regression ratio of 6.314606, the third is “weight”, 

with training set error of 7.069133 and regression ratio of 5.610409.  

Ten variants of ANN configuration were tested and the network with the best 

performance was found. The best network has 7 neurons in the hidden layer, three neurons in 

the input layer, and one in the output layer. The best network, which was presented in figure 

6, had very good performance (regression ratio of 0.082939, correlation of 0.996590).  

The root mean square (RMS) error is 1.26 for the training set, 1.431 for the verification set, 

and 2.058 for the testing set. Data mean values amount to 44.76745 for the training set, 

44.31372 for the verification set, and 43.92147 for the testing set.  

A comparison of the tested networks, which was presented in Table 3, used error and 

performance (regression ratio) in the training, verification and testing sets as comparison 

criteria. RBF, Linear and MLP ANN were compared with different number of neurons in the 

input and hidden layers.  
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Table 2. Sensitivity analysis 

 
ANN Inputs 

 
Weight Distance - reach Distance - move 

Rank for the training set 3 2 1 

Error for the training set 7.069133 7.956422 9.196858 

Regression ratio for the training set 5.610409 6.314606 7.299076 

Rank for the verification set 3 2 1 

Error for the verification set 7.214829 7.884785 9.064326 

Regression ratio for the verification set 5.043492 5.511822 6.336374 

 
Fig. 6. Network with the best performance 

Table 3. ANN comparison 

No. 
ANN 

type 

Number  

of inputs 

Number of 

neurons in 

hidden layer 

Error in 

training set 

Error in 

verification 

set 

Error in  

testing set 

Performance 

in training  

set 

Performance 

in 

verification 

set 

Perfor-

mance in 

testing  

set 

1 RBF 3 1 13.92865 14.60167 11.77032 0.8482831 0.8497279 0.9029566 

2 Linear 1 - 9.565818 10.5149 9.117561 0.5825776 0.6104776 0.6925398 

3 RBF 3 2 7.751826 7.75088 6.380776 0.4721019 0.4505856 0.4900851 

4 Linear 2 - 6.91898 7.139971 6.395506 0.4213798 0.4150859 0.4907349 

5 Linear 4 - 2.61497 2.681343 2.676967 0.159237 0.1560481 0.2052485 

6 Linear 3 - 2.10324 1.97248 2.36675 0.1280915 0.1145515 0.1819099 

7 MLP 3 4 1.503804 1.593164 2.072505 0.09153 0.09269 0.1597236 

8 MLP 3 5 1.31492 1.487755 2.035874 0.08008 0.08627 0.1560586 

9 MLP 3 6 1.286773 1.481432 2.073004 0.07804 0.0862 0.1596127 

10 MLP 3 7 1.260003 1.430523 2.057526 0.07674 0.08294 0.1568522 

 

The neural network presented in Fig. 6 generates time standard for the picking-up 

activity. Changeover process description should also take into consideration another activity. 

An example of a graph which supports decisions related to manual task description is 

presented in Fig. 7. The presented decision tree indicates the type of feeding and size  

of machine parts.  
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Fig. 7. An example of a decision tree – time standard calculation for activity of “picking up a workpiece” 

5. CONCLUSIONS 

The present study concerned developing a method of predicting human activity time 

standard. The proposed time standard predictor can be useful for changeover task planning. 

The proposed approach uses ANN as a tool of time standard prediction, and MTM, which is 

one of time standard setting methods useful in human activity task planning.  

The aim of this study was to develop a method for setting manual task time standard, 

which is easy to use and sufficiently precise. Application of ANN for this purpose helps in 

connecting elementary motions into activities and reduces the number of needed attributes.  

In the presented approach, an OAV scheme was applied, where an object is interpreted 

as a human activity type, attributes are analysed as a set of variables which influence  

the changeover process time standard, and attributes can assume particular values which can 

be qualitative or quantitative.  

Different ANN variants were compared as tools for time standard prediction. The best 

one with very good performance was found for the “picking-up” activity.  

Future research could be focused on defining another human manual activity and setting 

its time standard.  
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