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DETECTION OF WEAR PARAMETERS USING EXISTING SENSORS 

IN THE MACHINES ENVIRONMENT TO REACH HIGHER 

 MACHINE PRECISION 

This paper presents methods to plan predictive maintenance for precision assembly tasks. One of the key aspects 

of this approach is handling the abnormalities during the development phase, i.e. before and during process 

implementation. The goal is to identify abnormalities which are prone to failure and finding methods to monitor 

them. To achieve this, an example assembly system is presented. A Failure Mode and Effects Analysis is then 

applied to this assembly system to show which key elements influence the overall product quality. Methods to 

monitor these elements are presented. A unique aspect of this approach is exploring additional routines which 

can be incorporated in the process to identify machine specific problems. As explained within the paper,  

the Failure Mode and Effects Analysis shows that the resulting quality in a case study from a precision assembly 

task is dependent on the precision of the rotational axis. Although the rotational axis plays a significant role in 

the resulting error, it is hard to explicitly find a correlation between its degradation and produced parts.  

To overcome this, an additional routine is added to the production process, which directly collects information 

about the rotational axis. In addition to the overall concept, this routine is discussed and its ability to monitor  

the rotational axis is confirmed in the paper. 

1. INTRODUCTION  

Forward-looking error detection and prevention is a difficult task, especially in 

precision assembly because of tight tolerances. At the same time, the error prevention offers 

great potential as expensive defects are avoided. Within this paper, possibilities are shown 

how the need of machine maintenance, especially on precision automated assembly systems, 

can be recognized and planned. Such methods will help to predict failures. With this 

information, it will be possible to react before problems occur. From the user side, this 

allows planned maintenance instead of unplanned down time increasing throughput. 

Additionally, such methods extend the machine life. This paper will show an approach for 

predictive maintenance in a case study.  
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For this purpose, first the assembly system is presented. With the help of a FMEA 

(Failure Mode and Effects Analysis), it is shown that wear of the robot axes is one  

of the most important points to reach high assembly tolerances. Now a possible indication 

for a detailed analysis of the chosen axis is given, with the help of a power measurement 

during the production process. In the next step, the actual main measurement cycle is 

introduced. In this measurement, the robot moves in increment steps above the systems 

integrated bottom camera. Its positions are continuously tracked and evaluated. This method 

looks at adding redundent information about the system, which allows inaccuracies in  

the axes to be detected. Inaccuracies in positioning will be detected immediately. Within  

the final portion of this paper, a real world example is explored. Here an axis which has seen 

heavy usage is examined. 

1.1. STATE-OF-THE-ART 

A conceptualization of maintenance can be represented by the three factors reliability, 

availability and physical wear of machines [1, 2]. Using these parameters, it is possible to 

create a statement about the health of a machine. According to [DIN EN 13306] [3],  

a maintenance strategy can be defined as a “management approach to management 

objectives” such as detection of a potential defect, determination of the wear consumption, 

avoidance of downtimes.  

In general, maintenance of machines can be clustered into three main categories (see 

Fig. 1): the reactive strategy, the preventive strategy and the predictive maintenance 

strategy. Within the reactive strategy measurements are only taken if a failure appears. 

Thus, the machines are used until they fail. On one hand, a maximum use of the wear 

medium can be reached, but on the other hand, there is no possibility to plan manufacturing 

stops. Spare parts must also be available at all times. This maintenance strategy is also 

called “Run-To-Failure Maintenance” [5].  

The preventive maintenance strategy controls systems at periodic intervals. In this way 

it is desired that there are no machine malfunctions. Breakdown time and failure rate can be 

minimized. Spare parts and wear parts are not used effectively as parts which are susceptible 

to wear or breakdown are changed at regular intervals. In addition, detailed documentation 

and experience are necessary to establish reasonable maintenance intervals. [6].  

 

 

Fig. 1. Maintenance strategies [4] 
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Predictive maintenance is a major issue in the prior concept. The main aim is to ensure 

the machine maintenance in accordance with the machine state. In this way a maximum use 

of the wear medium is possible. Maintenance is plannable and effective. The principal 

works as follows: If the operating parameters are within a defined operating range, the wear 

medium can be used, if the limit values are exceeded, it must be replaced [7, 8]. 

For the purpose of predictive maintenance, continuous monitoring of the machine 

parameters is necessary. Mobley classified the five main inspection procedures to: visual 

inspection, vibration monitoring, process parameter monitoring, thermography and 

tribology [8]. The visual inspection is mostly used in form of operator inspection.  

In general, all test methods are usable. The most important prerequisite is a non-destructive 

test method.  

Tribology is especially interesting for cutting processes. Thermography is very useful 

in processes that heat up strongly. In precision assembly, this is not the case.  

For vibration-monitoring and process-parameter-monitoring, additional sensors are usually 

added to the machine [9, 10]. 

For the inspection of vibrations, a common analysis method is the FFT (fast Fourier 

transformation). Patil and Geikwad [9] used this to find mechanical defects in rotating 

electrical machines. Dempsey and Afjeh [11] combined the FFT with an analysis  

of the lubricant. With additional partials, they simulate wear of machine components. Verl 

[12] also follows a similar approach. Through investigation of positioning data, repeatability 

and reversal error of machine, Verl found defects on one machine axis in a laboratory 

environment. In this approach, no additional sensors were added, just the machine 

intergraded positioning sensors were used. Hoshi [13] also shows, that it is possible to draw 

conclusions about the state of the system by recording the machine motion. Also,  

the monitoring of parameters, like the used energy by the machine, is a good strategy. 

Combining the generated energy data with learning algorithms can result in behaviour 

patterns of the machine and can help to detect anomalies [14].  

Finally, the found machine abnormalities have to be communicated to the operator.  

He closes the maintenance loop and initiates the maintenance action. Uhlmann [15] 

indicates how to build human machine interaction. For example, maintenance instructions 

could be communicated in this way. 

In the state of the art, different methods to acquire information about the machines 

health and to initiate maintenance action were shown. In the sum, most approaches use 

additional sensors for measuring abnormalities [18, 19]. Only Verl [12] just used integrated 

sensors. In this case, however, no real functional verification of the used sensors was  

carried out.  

2. DETECTION OF WEAR PARAMETERS 

In this paper, a new approach for detecting the need of machine maintenance with 

internal sensors will be introduced. The focus within this paper is on a predictive 

maintenance approach without additional sensor technology. 
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2.1. DESCRIPTION OF THE TECHNICAL STRUCTURE 

The chosen assembly task is a precision assembly task. Special features that result 

from precision assembly are that the accuracies are kept within very tight tolerances on  

the order of less than 25 µm. To help achieve this, the assembly is set in a cleanroom with 

controlled temperature and humidity parameters. In addition, the mounting machine is  

a precision assembly robot with high accuracies of the positioning axis. The assembly robot 

has a repeatability of 1 µm in x-, y-, and z-axis. The complete technical structure can be seen 

in Fig. 2. The main elements used for manipulation tasks, in this paper, are the gripper and a 

chuck for part handling. In addition to the axes encoders, sensors such as a camera in the 

head of the robot, as well as a camera in the working area of the robot are included in  

the system. Additional height information can be gained by a laser sensor integrated within 

the robot head. This sensor basis is similar to commercially available precision and 

collaboration robots [16]. 

  

 

Fig. 2. Technical offset  

Next, with the help of an FMEA method (see [16]) mechanical wear in precision 

assembly systems is identified as one of the most important points for reaching high 

accuracies. In Table 1 an extract of the results of the FMEA are presented. The weighting  

of the errors can be found in the RPN (risk priority number). The errors explored within this 

paper are all originate from the machine. In addition to the machine itself, further errors can 

be found in the areas process, product and environment. As can be seen in Table 1 the most 

important errors are offset errors and axis wear. Offset errors mostly arise by the fact  
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of machine delay or disturbing bodies introduced in the technical offset. While offset errors 

occur stochastically, wear parameters can be described as a function of time.  

Table 1. Result of an FMEA to identify the most important influence factors for position errors in assembly tasks  

ID Error frequency importance discoverability RPN 

2 Offset-Error 9.2 7 10 644 

4 Higher axis wear 2.6 7 7.9 144 

5 Controler deviation 3.5 4 10 140 

41 
System external 

machan. Vibrations 
1.8 4 7.6 55 

66 
UV-fiber not properly 

aligned 
2.6 4 1.9 20 

67 UV-fiber bent 2.6 4 1.7 18 

2.2. IDENTIFYING OF CRITICAL POSITIONS WITH THE HELP OF POWER MEASUREMENT 

For identifying the need of maintenance, it is important to have a secure sign for 

further measurements. Figure 3 presents a sketch, that shows in which form a redundant 

(indication) measurement results in an axis measurement which allows the health to be 

determined. A good indicator can be the measurement of the power use of a single axis [13]. 

With such a measurement, it is possible to continuously search for abnormalities in  

the process. Another indicator can be the continuous monitoring of robot positions.  

For example, if components are gripped from magazines the gripping position should not 

fluctuate greatly. If fluctuations still occur, further investigations should follow. However, it 

is only an indicator and further measurements must follow to clarify if maintenance is really 

necessary. Further measurements often take more time and cannot be performed during  

the production, but they can be placed in production breaks.  

Now the required measuring cycles for detection of abnormalities in the robots axis are 

explained. First, the power measurement that serves as an indicator is presented. In Fig. 4 

and Fig. 5 it is observable that the rotational axis has abnormalities (wear effects) at special 

positions. Here a comparison between an axis area without wear and an axis area with wear 

is done. To find errors, an algorithm was used that looks for outliers based on an expected 

mean. In addition, the derivative of the function searches for local extrema.  

This combination makes it possible to find power peaks and resulting potential wear points. 

For this robot it is known, that the rotational axis has wear. That is why this axis is chosen 

for later experiments.  

The next step is to introduce incremental measurement of the robot axis (seen in 

Fig. 3). The theory behind it is to divide the axis into smaller sections and to move along 

each. The camera records the robot movement, and then the measured lengths of the divided 

axis areas can be compared. All measured axis sections should have the same length as long 

as the axis is wear-free. This measurement is time-consuming and will only be performed if 

signs of wear from the previous measurements are present. To cover the area of 0.05° it 

takes about 45 minutes. This type of measurement must be timed in production breaks. 
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Fig. 3. Implementation of indicator measurements 

 

Fig. 4. Detection of critical positions rotational axis Fig. 5. As comparison a linear axis without wear 

2.3. MEASUREMENT OF POSITIONING ACCURACY OF A SELECTED AXIS  

USING THE IMAGE VISION 

The previously described theoretical procedure of incremental axis measurement is 

now applied to the robot. To measure the positioning accuracy of the rotational axis  

of the robot, a test cycle, described above, was programmed and integrated using the image 

vision. This measurement takes advantage of sensors which are already found within  

the assembly system. As can be seen in Fig. 6, the robot moves a gripped part above  

the bottom camera and observes its motion. The experimental measurement scheme, behind 

this motion ,can be seen in Fig. 8. The acquired images of this measurement (seen in Fig. 7) 

show the underside of the attached object. The object contains a pattern that is detectable 

with the image processing. This way a relative position of the axis can be calculated and 

logged. The resulting pixel positions of the camera can be transferred to the robot coordinate 

system by means of a coordinate transformation. This can then be compared with  

the incremental encoders of the robot. 
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Fig. 6. Experimental structure in detail  

 

 

Fig. 7. Acquired image of the bottom camera. Measuring the real movement of the robot  

  

Fig. 8. Experimental measurement scheme  

The measurement program was created so that the smallest increment (0.001°)  

of the rotational axis was moved over a set region (set point + 0.5 degrees). Based  

on the results of the power measurements, the set point for the following measurements was 

chosen. At the end of each step, a picture was acquired using the image vision (bottom 

camera) and additionally the position of the robot was recorded, with the help of the axis 

encoders. This enables redundant measurement information and thus a comparison between 

the two values is possible.  

In order to detect irregularities in the movement of the robots’ axis, each increment is 

compared with its successor. In case the difference between predecessor and successor 

becomes near to zero there are no irregularities. Otherwise, it must be assumed that  

the robot movement is not constant. In Fig. 8 a scheme to visualize the measurement is 

given.  

The proposed experiment was repeated three times, each time about the same set point. 

In Fig. 9 a comparison between three experiments all done at the same heavily used axis 

area is shown. On the x-axis the steps of the robots’ movement are plotted in degrees.  
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On the y-axis the different Diff(T), explained in the scheme above (Fig. 8), is plotted also in 

degrees. In the case of an axis without errors, the data should be similar to a line about 

0.001°.  In the case of the experiments visualized in Fig. 9, it is observable that all three 

experiments have peaks (marked with a star) which are located across the entire experiment 

range. In Fig. 9, it is noticeable that many peaks occur systematically at the same location. 

About 77 % of all peaks are found in a comparative experiment at the same location. There 

is an algorithm, which is able to identify the main critical peaks in a movement. For this 

purpose, hard limits such as the standard deviation as well as criteria such as the slope 

change of the graph are investigated.  

 

Fig. 9. Detection of abnormalities (marked with a star) in axis movement 

         

Fig. 10. Axis area with abnormalities Fig. 11. Axis area without abnormalities  

      (Axis range about 11.65 to 11.9 °)  (Axis range about –0.3 to –0.1°) 

The axis range considered in Fig. 9 has a set point of 0 degree + 0.5° range because 

their poor axis behavior, with many abnormalities is assumed with the help of the power 

measurement (Fig. 4 and Fig. 5). To proof this assertion the rotation measurement is 
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repeated for other axis areas. The comparison measurements can be seen in Fig. 10 and  

Fig. 11. As you can see, there is a clear difference between the axis area of Fig. 10 (–0.3° to 

–0.1°) and Fig. 11 (11.65° to 11.9°). The deviation from the predecessor is plotted  

on the y-axis. High peaks mean strong position jumps. Figure 11 shows no oscillations but 

compensating fluctuations in positioning. The figures show, that the area of –0.3° to –0.1° is 

heavier in use than the area of 11.65° to 11.9°, which also corresponds to the real usage  

of the axis in production. 

3. PROOF OF CONCEPT  

To prove that the identified heavy used areas of the axis influence the accuracy  

of an assembly of two components, another attempt is made. A final repeatability 

measurement using the image vision (top camera) is performed. The experimental offset 

used for this purpose is shown in Fig. 12. Even this offset is part of the normal 

manufacturing environment of the robot. The robot takes a picture of the component placed 

on an active chuck (shown in Fig. 12) and calculates the position. Now the component is 

gripped, lifted and set down again. A new picture is taken and the resulting new position is 

calculated. The recorded positions of the component are plotted in Fig. 13 and Fig. 14.  

 

Fig. 12. Experimental offset for accuracy measurement 

Figure 13 shows the x-position about the y-positon of the handled component. It can 

be seen that the axis range without wear (about 11 degrees) has a distribution (circle 

represent 1 sigma), which is only the half of the heavy used axis range (about 0 degrees). 

The size of the distribution can be recognized by the radius (arrow) of the distribution cloud 

(Fig. 13). Furthermore, it is noticeable that the position clouds are not evenly distributed. 

There is a trend to recognize. This trend can be explained by slipping the component in one 

direction. Since the placed component is measured, handled, and measured again within  

the experiment, the position error increases after each handling because it adds up.  

The starting / target position is marked with a cross in Fig. 13. 

Figure 14 shows the change in component torsion over the number of trials. This is 

done in degree, so the highest value is about 0.12 °. Within precision assembly, this range is  

of significance. The heavily used area has more peaks (marked) over the section than  

the good axis area. In addition, the angle measurement shows a trend.  
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Fig. 13. Position of placed component. Comparison of 

axis range with (around 0°, here red ) and without 

(around 11°, here blue) wear 

Fig. 14. Angle of placed component. Axis range 

around  0° in red, axis range around 11° in blue 

After all the measuring cycles, that have been shown in Fig. 3, have been checked 

properly, a statement about this maintenance schedule can be made. In conclusion,  

the assumption that the found heavy used axis areas influence the positioning accuracy can 

be confirmed. Thus, both the proposed indication measurement (measurement of the power 

consumption of the robot) and the actual measuring cycle (measurement of the positioning 

behavior of the robot) are suitable. 

 

       
Fig. 15. Determination of the robot's FFT        Fig. 16. Determination of the robot's FFT  

before axis maintenance oscillates  after axis maintenance 

In an additional case study, an FFT analysis of the axes showed that axis maintenance 

leads to better movement behavior. The frequency response was recorded before and after 

maintenance. Clear differences can be seen in this, see Fig. 15 and Fig. 16. If axis wear is 

detected using the proposed measuring principle, it can be demonstrated that the movement 

behavior improves after maintenance. 
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4. CONCLUSION  

The goal of predictive maintenance is to minimize unproductive times. In addition, 

machines should only be serviced if necessary and there is a sign for abnormalities. In order 

to find such signs of wear, some measuring methods have been proposed in this paper. 

These measuring methods were all validated on experiments.  

In summary, this paper has presented two indicator measurement cycles and also 

demonstrated their function. It was further shown with a third measuring cycle that it is 

possible to confirm these indicators during production breaks. For all measurements carried 

out, only system integrated sensors were used. Only additional axis movements that can be 

carried out during production breaks have been integrated. The presented system is thus able 

to carry out such a diagnosis completely independently and without the help of additional 

hardware. It was finally shown, that the abnormalities found also have an actual influence 

on the positioning of components and with that, influence of the accuracy of assemblies.  

This presented method introduces a new methodology in the field of predictive 

maintenance and was validate in a case study. Looking ahead, the functionality that was 

previously only tested in the laboratory environment needs to be tested in a real 

manufacturing environment. 
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