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DEVELOPMENT OF AN AUTOMATED ASSEMBLY PROCESS SUPPORTED 

WITH AN ARTIFICIAL NEURAL NETWORK  

A central problem in automated assembly is the ramp-up phase. In order to achieve the required tolerances and 

cycle times, assembly parameters must be determined by extensive manual parameter variations. Therefore,  

the duration of the ramp-up phase represents a planning uncertainty and a financial risk, especially when high 

demands are placed on dynamics and precision. To complete this phase as efficiently as possible, comprehensive 

planning and experienced personnel are necessary. In this paper, we examine the use of machine learning 

techniques for the ramp-up of an automated assembly process. Specifically we use a deep artificial neural 

network to learn process parameters for pick-and-place operations of planar objects. We describe how  

the handling parameters of an industrial robot can be adjusted and optimized automatically by artificial neural 

networks and examine this approach in laboratory experiments. Furthermore, we test whether an artificial neural 

network can be used to optimize assembly parameters in process as an adaptive process controller. Finally, we 

discuss the advantages and disadvantages of the described approach for the determination of optimal assembly 

parameters in the ramp-up phase and during the utilization phase. 

1. INTRODUCTION 

The set-up process of the assembly plant -also called ramp-up- is a central problem in 

automated assembly. Depending on the complexity of the assembly task, setting the mounting 

parameters can be very time-consuming and therefore costly. This concerns, for example,  

the parametrization of gripping, motion and placement processes. Parameters such as the gripping 

position, robot path, acceleration, speed and the operating parameters of the gripping tool, 

compressed air supply pressure or force control, must be taken into account. Camera calibration is 

usually necessary for the localization and measurement of components to achieve the desired 

accuracy. A coordinate transformation must be identified to define the robot and camera coordinate 

systems relative to each other, if a camera is used to determine gripping positions for the robot [1]. 
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1.1. THE CHALLENGE  

The explicit descriptions of the systems, the calibration process, tolerances of the plant 

and the assembled components, as well as the prevailing environmental conditions are 

potential sources of error. Because of the multitude of potential error sources, the search for 

and the elimination of a fault or fault combination can be very labor-intensive and 

complicated. Especially non-linear effects are a major problem because their relations are 

difficult to identify and to understand by humans. The identification of the causal 

relationships is difficult because the causes and effects are in different physical domains, for 

example, optical, geometric thermal, structural, electrical, magnetic or dynamic effects and 

combined effects. These include temperature effects, rotation errors, wear, camera lens 

distortions. Even worse, however, are discontinuous nonlinear error effects, such as rapid 

ambient light changes, or vibrations from environmental processes. Therefore much time is 

usually wasted in order to identify the relevant correlations. Figure 1 shows the potential 

error sources and their effects in a generic assembly system. 

potential error sources: 

 Inexact location description 

 Inhomogeneous lens 

distortions and camera 

calibration 

 Equipment and Product 

tolerances 

 Wear and aging 

 Exposure or radiation effects 

 Temperature effects 

 Humidity and air pressure  

 Vibrations 

 Flow effects 

 Tribological effects 

 Electrical and Magnetic effects 

 Etc.  

Fig. 1. Influences and combinations of influences that aggravates automated assembly 

The necessary coordinate systems (e.g. robot, gripping tool, assembly fixtures, 

camera) can be defined by means of coordinate transformations to each other. In industrial 

applications, computer aided engineering (CAE) systems are often used to plan the work 

cell of an application and the program sequences. Program sequences can be created and 

optimized with regard to collision, travel times and dynamics with CAE systems. However, 

the CAE model is always a simplified representation of the real plant. Therefore, parameters 

determined in a simulation by means of the CAE system can only lead to an optimal 

assembly program in reality on the condition that the model is sufficiently precise. The CAE 

model is a simplified, bounded representation of reality to keep modelling efforts 

manageable. It is not possible to take all the real assembly influences into account, since for 

technical reasons, and above all for economic reasons, the degree of detail of the models is 
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limited [2]. Therefore not all error influences that arise in reality can be consider in 

simulations. 

Figure 1 shows a number of negative influences on repeatability and precision in 

assembly processes. These can only be taken into account to a limited extent in a simulation 

model. Common influences on deviations in a final assembly are geometric tolerances in  

the gripper tool, in assembly fixtures or in the assembled components themselves. Thermal 

influences, for example in the warm-up phase of a robot, can lead to variable positioning 

results. A common problem for industrial image processing is variable lighting or shading 

conditions that can lead to poor image processing results. Considering all the relevant 

disturbances, devising an adaptive control scheme to compensate for error influences is  

a challenge, since the error effects are superimposed and influence each other. 

1.2. PREVAILING SITUATION 

The problem with the current approach is finding a parameter set that can optimally 

represent all relevant variable influences during operation. Figure 2 details the flow  

of information during the lifecycle of an assembly plant. 

Major properties and specifications of an assembly system are defined in the planning 

phase of the system. To simplify the ramp-up phase and to guarantee a robust operation it is 

necessary to plan for enough technical reserves. However, these technical reserves are 

associated with additional costs in plant construction. Cost drivers include, for example,  

the required robot repeatability or the required tolerances in the camera technology or 

assembly fixtures.  

To achieve the required specifications under the influence of relevant error sources,  

a test phase is usually necessary parallel to or directly after the construction of the system. 

During the test phase, emerging assembly deviations are usually corrected by additional 

calibration processes, improvement of coordinate transformations or by additional offset 

parameter [3]. 

 

Fig. 2. Manual laborious search for suitable parameter sets 
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Experienced, well-trained personnel are needed to quickly identify all relevant 

influences and relationships and to adapt parameters in a focused way. Either experience-

based or methodical approaches are used to quickly generate a sufficient parameter 

configuration by these Experts (for example by means statistical design of experimen)  

[4, 5]. Due to time and economic limitations, it can be assumed that a search for the best 

parameter set in the test phase can only be limited.  

Upon completion of the test phase, the productive operation phase starts. During  

the productive phase parameters of the assembly system must constantly be adjusted.  

The causes for this are manifold and can be attributed, for example, to system wear, aging, 

changed component tolerances or changed environmental conditions. The parameter 

adjustments are determined based on the operators experience, often ad-hoc during  

the production operation. This continuous manual intervention is depicted in Fig. 2. 

1.3. MOTIVATION AND TARGET 

Since the experience-based set up strategies are labor intensive, automation concepts 

for the parametrization of assembly processes are needed, especially with regard to flexible 

production concepts and small lot sizes. Continuous optimization and parametrization 

during the production phase would also be beneficial for the stability and productivity  

of the assembly process. 

The first objective is to arrive at a suitable parameter set efficiently when setting up or 

retooling assembly systems. The second objective is adaptive compensation of non-linear, 

combined, multi-dimensional error influences during operation.  

The third objective is to optimize the assembly parameters up to the technical 

maximum, despite economic (time and financial) limitations. Goals in this optimization are, 

for example, the increase in assembly accuracy and the increase in the output quantity, or 

the reduction of wear and energy consumption. Finding a balanced optimum between these 

goals usually requires a lot of effort and experienced staff. This optimization should 

therefore be done as autonomously as possible. The vision is to reach an optimum between 

these target variables, under varying influence parameters with the least possible effort. 

2. IMPROVEMENT OF A PICK AND PLACE PROCESS USING  

AN ARTIFICIAL NEURAL NETWORK 

The idea to use Artificial Neural Networks (ANN) in the control handling systems is 

well established [6-9].The central approach applied in this paper is to use ANNs to predict 

error magnitudes and use them in plant control for error compensation [10]. The ANN is 

used to approximate linear, as well as non-linear, multi-dimensional influencing variables or 

combinations of influencing variables. Predicted errors are used to improve plant control. 

The ANN will enable a product-related control loop for plant control in order to be able to 

adapt the process parameters during operation with variable influences.  
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ANNs represent a promising approach to parameter optimization in handling 

technology and automated assembly for a number of reasons. One of the most important 

features of ANNs, that offers great potential in automated assembly, is the ability to learn an 

approximation of any continuous mathematical function [11]. Due to this property, it should 

be possible to map continuous, nonlinear relationships that are attributed to physical, 

chemical or other causes with an ANN. ANNs could also be used to model unknown 

relationships when extensive data sets containing peripheral information are used as training 

data [12]. For example, if an ANN is trained with mounting deviations and the time of day, 

it could learn and predict continous time-dependent mounting deviations [13]. A theoretical 

example is the influence of mechanical vibrations caused by a tram passing next to  

the factory building, as shown in Fig. 1. If the positioning accuracy of a precision assembly 

process is periodically poor due to the rhythm of the tram timetable, an ANN could 

recognize the connection between time and positioning accuracy. A human being would 

have to actively search for and recognize the temporal pattern in order to identify  

the tram influence. In addition, a continuously (online) learning ANN could take into 

account timetable changes after a certain period of time, whereas a person would have to be 

commissioned to investigate the pattern again.  

 

Fig. 3. Automatic process parametrization by an artificial neural network 

ANNs offer the potential to account for complex relationships, which are represented 

directly or indirectly in a given dataset. The recognition of patterns in data sets with many 

different parameters and unknown correlations is an interesting feature for automated 

assembly, since these multiple (cross-) correlations make a targeted optimization  

of the assembly line very complex for humans. Another feature of an ANN is its high 

tolerance to internal and external errors (Internal errors are not considered in this paper). 

Tolerance to external errors means that ANNs can also work with incomplete/unknown or 

damaged input values. A properly trained ANN has a generalizing character that can enable 

it to process unknown, incomplete or faulty data correctly. For automated assembly, this 
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capability offers the potential to increase the robustness of the overall system by providing 

extensive, redundant data sets alone. For example, a failure of a sensor could be 

compensated by the ANN estimating a sensor value via the remaining inputs. The ability to 

learn, tolerance towards errors and generalization of correlations are arguments for the use 

of ANN in automated assembly [14]. 

The approach presented in the remainder of this paper is an autonomous optimization 

of assembly parameters by an artificial neural network (ANN). How assembly parameters 

can be adapted by an ANN to increase the assembly quality is shown in an application study 

on the pick and place process of Lithium-ion pouch cell components. This approach 

simplifies the ramp-up process significantly and is therefore cheaper.  

The ANN is applied to the task of finding causal relationships in the stored process 

and product data and predicting assembly deviations. Then, the mounting deviations 

predicted by the ANN are used to fine-tune the plant control and to improve the assembly 

quality. The ANN is introduced in two distinct phases of the process life cycle as shown  

in Fig. 3: as an adjustment of process parameters in the ramp-up phase and as a continuous 

optimizer in the production phase. 

3. CASE STUDY: PICK AND PLACE OF LITHIUM ION BATTERY COMPONENTS 

The stacking of battery components is a currently relevant pick and place process. 

Mounting accuracy is important in this process to ensure a good performance of the finished 

product. This assembly process of planar components is used as the demonstration example 

in this paper. The aim of this experiment is to show how a ANN can be used to increase  

the accuracy of a pick and place process. For this purpose, a test rig with very limited 

accuracy was set up. The ramp-up was reduced to the basic functions without investing time 

in the calibration, to specifically demonstrate the ability of an ANN to deal with a badly 

calibrated plant. 

3.1. EXPERIMENTAL SETUP AND TEST PROCEDURE OF THE PICK AND PLACE PROCESS 

The assembly process of lithium ion battery components can be reduced to a simple 

pick and place process. This is a generic handling process with four degrees of freedom  

(X, Y, Z, Θ). Similar handling processes are found in many different industries, for example  

the precise assembly of surface mounted devices (SMD) on printed circuit boards in  

the electronics industry or the packaging of products in the food- and pharmaceutical 

industries. Figure 4 illustrates the setup of the experiment, which consists of a robot with 

gripper, two tables and two cameras for detecting and measuring components.  

The experimental setup is devised to represent the generic pick and place process: variably 

deposited electrodes are picked up from a table in “Field A” and deposited on a measuring 

table in “Point B” with a defined orientation by a robot.  

 At the start of the handling process camera one above Field A is used to detect  

the position of the electrodes. Camera one is a zoom camera with a 2592 × 1944 pixel  
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(5.04 mega pixel) sensor. With a fixed image width of 665 mm (zoom off) and a divisor of 4 

for the edge scanning (Nyquist-Faktor) [15], the camera one offers a resolution of 1.026 mm 

without subpixel interpolation. The position detection in Field A is realized by a classical 

pattern matching. In this case the image processing software HALCON was used for  

the experiment, but any suitable image processing software could be used. The components 

can be deposited in varying positions and orientations (X, Y, Θ) in Field A. Based on 

a successful pattern matching, the center position and orientation of the part in Field A is 

calculated and transmitted to the robot controller. The robot moves to the detected position 

in Field A, reorients the gripper to the angle Θ and grips the part by vacuum. In order to 

guarantee the basic function of the camera-supported gripping, a rough coordinate 

transformation from the camera coordinate system to the robot coordinate system was 

created before the experiments. However, an exact calibration of the camera coordinate 

system to the robot coordinate system was not carried out. Furthermore, the precise 

alignment and calibration of the camera one was deliberately dispensed with. 

 

Fig. 4. Experimental Setup 

After the robot has gripped the component, it moves to a taught-in assembly Point B 

and places it there. The robot then moves to a waiting position outside the field of view  

of camera two so that the resulting mounting deviations at Point B can be measured.  

This second camera, used to measure the mounting deviation, has a sensor with  

3840 × 2748 pixels (10.55 mega pixel). In our setup this camera therefore offers a resolution 

in the detection plane of ~ 0.16 mm, based on an image width of 158 mm and a divisor  

of 4 for the edge scanning, without subpixel interpolation. The lens distortion of the camera 

two was calibrated with a calibration standard. An exact calibration to the robot was not 

made, since only offsets from a desired positon are to be measured.  

 With the second camera and image processing, the deviations in X, Y and Θ at 

mounting Point B are determined. In order to repeat the process automatically after 
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measurement, the robot places the component at a new location in Field A. In this way, data 

about the pick and place process could be collected quickly (one repetition of the cycle takes 

about 10 s). The procedure of the pick and place process and experimental data acquisition 

is shown in Fig. 5. 

 

Fig. 5. Procedure of the pick and place experiments 

3.2. ANALYSIS OF INITIAL EXPERIMENTAL RESULTS WITHOUT ANN 

The pick-and-place attempt was repeated 1000 times. From each test the detected part 

position in field A and the measured assembly deviation at point B were stored. Figure 6 

shows the detected positions of the parts in field A. The detection zone of the camera one 

represented by field A has been sampled extensively. Figure 7 shows the corresponding 

measured mounting deviations at point B. The open-loop process without any correction 

resulted in a flat sickle-shaped distribution of the mounting deviations. In order to clearly 

identify this characteristic distribution of the mounting deviation, a certain number of tests 

are necessary. 

The deviations from the setpoint at position B shown in Fig. 7 are large compared to 

the desired assembly accuracy. On the X-axis, deviations between -25 mm and +20 mm 

were measured. On the Y-axis deviations between -22 mm and +2 mm were measured.  

One possible reason for this is the very poor alignment and missing calibration of camera 

one, which is used for the detection of the component in field A. In addition to the camera 
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resolution and calibration, the robot kinematics and the gripping system also have  

an influence on the assembly quality. In the experiments an industrial SCARA robot, model 

“Stäubli TS 80” was used. This robot offers a high repeat accuracy of ± 0.01 mm.  

An inexact robot can thus be excluded as the cause of the detected deviations. The gripping 

system is a very simple vacuum surface aspirator produced by additive manufacturing.  

The handling accuracy of the gripper was not determined. However, it has been found that 

the gripper vibrates due to low rigidity and the vacuum pads are not particularly flat because 

of the additive manufacturing process used to fabricate it. Therefore the handling accuracy 

is assumed to be very limited.  

 

 

Overall the experimental handling system comprises a multitude of error sources, 

which influence the measured assembly deviations. To eliminate all of these, time 

consuming manual labor would be necessary. Therefore the experimental setup is a good 

representation of the challenges faced in the ramp-up of real automated assembly systems. 

3.3. REDUCTION OF THE ASSEMBLY DEVIATION BY AN ARTIFICIAL NEURAL NETWORK 

The deviations of the assembly position should now be reduced by an ANN. To this 

end the ANN should represent the transformation of the measured pick position in field A to  

the positioning deviation at Point B. This “error estimation” can then be used in a feed-

forward control scheme for the place position. 

Through the accuracy investigations, 1000 pick and place tests were recorded as 

system observations: 800 were used as training data and the remaining 200 as validation 

data in the offline training step. An extract of the saved file with 1000 attempts is shown  

in Table 1. 

  

Fig. 6. 1000 detected positions of the parts in Field A Fig. 7. 1000 measured mounting deviations to Point B, 

after the pick-and-place process 
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Table 1. Extract of the saved file with 1000 attempts 

 Inputs_data (part positions in field A) Outputs_target (mounting deviations to point B) 

Row Nr. X-Detection Y-Detection RZ-Detection X-Deviation Y-Deviation RZ-Deviation 

1 -49.513462 78.765 -28.0123 4.63602 -17.8819 0.614641 

2 13.016266 -116.947 18.2779 -6.708044 -14.6227 0.298875 

3 25.25279 -92.7833 31.9414 -10.798522 -13.0408 0.412524 

up to 1000 … … … … … … 

The ANN was trained line by line in the illustrated application. Each line contains  

the input data and the corresponding output data for the training. The gripping positions 

represent our input data for the ANN. The assembly deviations represent the output data for 

the training of the ANN. For training, it is important to transfer the determined gripping 

position with the associated measured assembly deviations as a batch to the ANN.  

If the input values and output values were swapped or mixed, the ANN would be trained 

incorrectly. 

In order to learn the correlation between pick pose and assembly deviation, a deep 

feedforward artificial neural network [16] with a total of 6 layers and 45 neurons was 

constructed. To enter the position in X and Y as well as the rotation Θ of the detected 

component, the network requires three input neurons. For the prediction of the assembly 

deviation at Point B with X and Y and the rotation Θ, the network requires three output 

neurons. Between the input layer and output layer, the network has four hidden layers, with 

fifteen, ten, eight, and six neurons each. 

A deep neural network was observed to be beneficial for this application. With 

a simple network with one hidden layer, the desired predictive accuracy could not be 

achieved, because deep neural networks have better parameter efficiency in 

multidimensional interrelations than networks with only one hidden layer and many neurons 

[16]. The hidden layers 1-4 have activation function of the type: exponential linear unit 

(ELU) [17]. In this work Python 3 with Tensorflow was used for the modeling  

of the ANN. Alternatively, other systems are possible. Part of the Python Tensorflow code 

is shown in Fig. 8. 

After the training of the ANN, a second experiment was conducted with the assembly 

system. The experimental procedure was basically identical to the first experiment. 

However, the trained ANN was used to generate offsets (ΔX, ΔY and ΔΘ) for the placement 

processes. The trained ANN was given the recognized position of the component in  

the Field A. The trained ANN can then determine the probable position deviation  

(ΔX-Prediction, ΔY-Prediction and ΔΘ-Prediction). The predicted position deviation is 

added as an additional offset to the robot pose. In the experiment, the positional deviation 

was added directly to the gripping position, since the largest error influences were assumed 

to be in the gripping position calculation.  

It is also conceivable to add the positional deviation to the place position.  

This experiment was carried out 180 times. The result of these pick and place tests are 

shown in Fig. 9.  
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# Import tensorflow, numpy, and csv-libraries 

[...] 

# Read and split data in test and training-data 

[...] 

 

# Set number of epochs and number of datapoints 

n_epochs = 100000 

batch_size = 1 

neuralNetName = 'DeepNetELU-15-10-8-6' 

 

# Set number of hidden layer nodes 

hidden_layer_nodes_1 = 15 

hidden_layer_nodes_2 = 10 

hidden_layer_nodes_3 = 8 

hidden_layer_nodes_4 = 6 

 

# Set number of in and outputs 

nr_of_inputs = 3 

nr_of_outputs = 3 

 

#Create placeholder for in- and outputs 

inputs_data = tf.placeholder(dtype=tf.float32, shape=[batch_size, nr_of_inputs], name='input') 

outputs_target = tf.placeholder(dtype=tf.float32, shape=[batch_size, nr_of_outputs]) 

 

 

 

 

 

 

 

#Declare model 

W1 = tf.Variable(tf.truncated_normal(shape=[nr_of_inputs, hidden_layer_nodes_1], stddev=0.1)) 

b1 = tf.Variable(tf.constant(0.0000001, shape=[hidden_layer_nodes_1])) 

W2 = tf.Variable(tf.truncated_normal(shape=[hidden_layer_nodes_1, hidden_layer_nodes_2], 

stddev=0.1)) 

b2 = tf.Variable(tf.constant(0.0000001, shape=[hidden_layer_nodes_2])) 

#Declare W3, b3, W4, b4 similarly 

# [...] 

W5 = tf.Variable(tf.truncated_normal(shape=[hidden_layer_nodes_4, nr_of_outputs], stddev=0.1)) 

b5 = tf.Variable(tf.constant(0.0000001, shape=[nr_of_outputs])) 

 

#Declare model operations 

hidden_outputs_1 = tf.nn.elu(tf.add(tf.matmul(inputs_data, W1), b1)) 

hidden_outputs_2 = tf.nn.elu(tf.add(tf.matmul(hidden_outputs_1, W2), b2)) 

# [...] 

final_outputs = tf.identity(tf.add(tf.matmul(hidden_outputs_4, W5), b5)) 

 

#Declare optimizer and loss function  

loss = tf.reduce_sum(tf.abs(outputs_target - final_outputs)) 

optimizer = tf.train.GradientDescentOptimizer(0.00001) 

train_step = optimizer.minimize(loss) 

 

#Start session 

with tf.Session() as sess: 

    #Initialize variables 

    init = tf.global_variables_initializer() 

    sess.run(init) 

    #Train the model 

 

    #Split data into batches to feed to the model (test and training) 

    #[...] 

  

    #Train and test the model 

    sess.run(train_step, feed_dict = {inputs_data: input_batch, outputs_target: output_batch}) 

    sess.run(loss, feed_dict = {inputs_data: input_test_batch, outputs_target: 

output_test_batch}) 

 

    #Get the prediction of the model 

    prediction = sess.run(final_outputs, feed_dict = {inputs_data: input_test_batch}) 

 

#Save the model#[...] 

Fig. 8. Partial Source code of the ANN application in TensorFlow 
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Fig. 9. Validation result from 190 Pick and place attempts  

This is an exemplary non-optimized network. In order to quickly achieve a high 

prediction accuracy about the deviations, the number of neurons and hidden layers, for 

example, must be adapted to the quantity and quality of the training data. 

The result clearly shows an improvement in mounting accuracy. In additional 

investigations, the ANN was further trained online. It was observed that the accuracy can be 

improved further with additional training data. For industrial operations, an ANN could thus 

be used as a continuous assembly optimizer. The simple implementation as an additional 

offset could also prove advantageous in already constructed systems. 

4. CONCLUSION AND OUTLOOK 

In this paper it is shown how artificial neural networks can be used to improve 

mounting accuracy in automated assembly systems. Our goal was to show the potential  

of machine learning techniques in general and artificial neural networks in particular in 

automated assembly processes. 

Error influences in automated assembly can be caused by a multitude of sources, many 

of which cannot be accounted for prior to the ramp-up phase. These error influences are  

the reason why adaption of assembly parameters during the ramp-up can be regarded as  

a critical process step. The labor-intensive selective search for error reasons and their 

elimination is critical. As an alternative approach, this work demonstrates how artificial 

neural networks can significantly reduce the impact of errors in automated assembly.  

For the investigation and demonstration, a camera-based pick and place process was set up. 

Then pick and place tests of the assembly system were recorded. For this, the pick positions 

and the corresponding assembly place deviations were measured. Based on this data,  

an ANN was trained offline. In our experiments, a deep feed-forward neural network was 

necessary to estimate the measured deviations with adequate precision. This trained network 

was used in order to generate additional offset values for the pick and place process. 

Mounting Deviation without ANN 

  ΔX ΔY ΔΘ 

Average -3.15 -11.65 0.51 

Dispersion 12.40 5.31 0.32 

 

 

Mounting Deviation with ANN 

 ΔX ΔY ΔΘ 

Average -1.18 -0.55 -0.01 

Dispersion 0.63 0.59 0.24 
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4.1. ADVANTAGES AND DISADVANTAGES OF THE PRESENTED APPROACH 

The presented approach is fast to implement and can potentially compensate any 

systemic error influence. 1000 process cycles of the assembly process, which could be 

acquired in a few hours, were sufficient to reach the desired training quality. In a final 

experimental validation run, the trained network was shown to reduce the measured 

deviations by one order of magnitude. 

The main disadvantage is that an explicit error analysis does not take place.  

The description of the causes of the error is not necessary. An extensive understanding  

of causes of errors and possible explicit solutions is not necessary, thus learning effects 

regarding the design of the assembly plant become harder to realize. 

4.2. OUTLOOK 

The example presented is transferable to different pick and place processes, with 

different components and robots. Also conceivable is the improvement of precision 

assembly systems and assembly systems with more degrees of freedom. The potential 

usefulness of ANNs in industrial processes reaches far beyond these examples. Artificial 

neural networks could also be used in other robot-based industrial processes such as 

automated welding, bonding and 3D printing. For example, the robot paths and  

the associated measurements of the sweat, adhesive or 3D printing webs could then serve as 

training data for the ANN. 

REFERENCES 

[1] BOLMSJO G., 2014, Reconfigurable and Flexible Industrial Robot Systems, Adv. Robot. Autom., 3/117,  

DOI: 10.4172/2168-9695.1000117. 

[2] SCHERF, H., 2010, Modellbildung und Simulation dynamischer Systeme, Eine Sammlung von Simulink-

Beispielen, l, Oldenbourg Wissenschaftsverlag, Available online at http://lib.myilibrary.com/detail.asp?id=609459. 

[3] SCRIMIERI D., OATES R.F., RATCHEV S.M., 2015, Learning and reuse of engineering ramp-up strategies for 

modular assembly systems, J. Intell. Manuf., 26/6, 1063–1076, DOI: 10.1007/s10845-013-0839-6. 

[4] GRAVEL D., ZHANG G., BELL A., ZHANG B., 2009, Objective metric study for DOE-based parameter 

optimization in robotic torque converter assembly, IEEE/RSJ International Conference on Intelligent Robots and 

Systems, St. Louis, MO, USA, 10.10.2009 - 15.10.2009, 3832–3837. 

[5] SU Ch.T., CHIANG T.L., 2003, Optimizing the IC wire bonding process using a neural networks/genetic 

algorithms approach, Journal of Intelligent Manufacturing,14/2, 229–238, DOI: 10.1023/A:1022959631926. 

[6] MONKMAN Gareth J., 2007, Robot grippers, Weinheim, Chichester, Wiley-VCH, http://search.ebscohost.com/ 

login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=190005 

[7] ARAI F., RONG L., FUKUDA T., 1993, Trajectory control of flexible plate using neural network, Proceedings 

IEEE International Conference on Robotics and Automation, Atlanta, GA, USA, 2–6 May 1993, IEEE Comput. 

Soc. Press., 155–160. 

[8] KOBER J., PETERS J., 2014, Learning Motor Skills. From Algorithms to Robot Experiments, Springer Tracts in 

Advanced Robotics, 97, http://dx.doi.org/10.1007/978-3-319-03194-1. 

[9] ZHONG X., LEWIS J.N.N., FRANCIS L., 1996, Inverse robot calibration using artificial neural networks, 

Engineering Applications of Artificial Intelligence, 9/1, 83–93, DOI: 10.1016/0952-1976(95)00069-0. 

http://search.ebscohost.com/%20login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=190005
http://search.ebscohost.com/%20login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=190005
http://dx.doi.org/10.1007/978-3-319-03194-1


P. Bobka et al./Journal of Machine Engineering, 2018, Vol. 18, No. 3, 28–41 41 
 

[10] WEI Z.P., FANG G., 1999, Model Predictive Control for Robot Manipulators Using a Neural Network Model, 

Australian Conference on Robotics and Automation, 62-67, http://www.araa.asn.au/acra/acra1999/papers/ 

paper13.pdf. 

[11] CYBENKO G., 1989, Approximation by superpositions of a sigmoidal function, Math. Control Signal Systems, 

2/4, 303–314. DOI: 10.1007/BF02551274. 

[12] KUSIAK A., 1994, Artificial Neural Networks for Intelligent Manufacturing, Dordrecht, Springer Netherlands. 

https://ebookcentral.proquest.com/lib/gbv/detail.action?docID=3109078. 

[13] WANG D., BAI Y., 2005, Improving Position Accuracy of Robot Manipulators Using Neural Networks, IEEE, 

Instrumentation and Measurement Technology Conference Proceedings, Ottawa, ON, Canada, 16-19 May 2005, 

1524–1526. 

[14] MAREŠ T., JANOUCHOVÁ E., KUČEROVÁ A., 2016, Artificial neural networks in the calibration of nonlinear 

mechanical models, Advances in Engineering Software 95, 68–81, DOI: 10.1016/j.advengsoft.2016.01.01. 

[15] DAS A., 2015, Introduction to Digital Image, Guide to Signals and Patterns in Image Processing, Foundations, 

Methods and Applications, Springer International Publishing, 1–42, https://doi.org/10.1007/978-3-319-14172-5_1. 

[16] GÉRON A., 2017, Hands-On machine learning with Scikit-learn and TensorFlow, Concepts, tools, and techniques 

to build intelligent systems, O'Reilly, http://proquest.safaribooksonline.com/9781491962282. 

[17] CLEVERT D.A., UNTERTHINER T., HOCHREITER S., 2015, Fast and Accurate Deep Network Learning by 

Exponential Linear Units (ELUs), Published as a conference paper at ICLR 2016, arXiv:1511.07289. 

 

http://www.araa.asn.au/acra/acra1999/papers/%20paper13.pdf
http://www.araa.asn.au/acra/acra1999/papers/%20paper13.pdf
https://ebookcentral.proquest.com/lib/gbv/detail.action?docID=3109078
https://doi.org/10.1007/978-3-319-14172-5_1
http://proquest.safaribooksonline.com/9781491962282

