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COMPARISON OF CLASSIFICATION ABILITY INDICES 

OF PARAMETERS CHARACTERIZING THE STEREOMETRIC FEATURES 

OF TECHNICAL SURFACES 

The study examined the relationship between the values of two indices evaluating the classification capacity  

of parameters characterizing the stereometric features of technical surfaces. The values of 83 3D parameters 

characterizing the stereometric features for 22 surfaces created in various machining processes were taken into 

account. The examined surfaces differ significantly in the stereometric characteristics of the surface with  

the similar value of the St  parameter. The variance and the geometric mean of ordered parameter values 

differences were used as the indices of parameters classification ability. In particular, the existence, type and 

strength of relationship between the adopted indices were evaluated, and the model of the relationship between 

the indices was determined using the least-squares method. A comparison of the results obtained with those 

obtained from the analogous evaluation for 8 types of theoretical distributions of parameter values was also 

carried out. 

1. INTRODUCTION 

The development of manufacturing technology results in the need to analyze and 

improve the quality of technical products. One of the basic issues related to the production 

of modern, highly specialized machinery and equipment is the assessment of the quality  
*of technical products and forecasting of their operational properties. The large importance  

of research in this area is related to the increase in the requirements for the accuracy  

of the manufactured components and their properties, including the strength associated with 

an increase in the loads to which the machine elements are subjected. 

The conducted research led to the development of many new measurement methods 

and devices for their implementation. The large number of methods used significantly 

increased the number of parameters used [1]. One of the elements of technical products 

quality assessment is the analysis of surface topography, and in particular the stereometric 

features of the surface [1-3].  
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The analysis of the stereometric features of the surface in precision machining is 

difficult, due to the small unevenness range of the analyzed surfaces [4]. Another difficulty 

is the selection of appropriate parameters to describe the surface topography [5-7]. More 

than three hundred standardized parameters are currently used to assess the geometric 

structure of the surface, both in 2D and 3D system. These parameters evaluate different 

elements of the examined surface or result from different approaches to the assessment  

of the same feature. The analyzes carried out show that some parameters are strongly 

correlated with each other. Failure to take into account these relationships when selecting 

the parameters used in the analysis may lead to duplication of the obtained information [5]. 

The number of parameters used for surface assessment should be small, with  

the complementarity of the set. This would enable an easy and comprehensive description  

of the analyzed surface. When selecting a set of parameters to be used, the purpose  

of the product should also be taken into account. No more than five parameters should be 

considered in the description of any type of surface. In industrial practice, only one selected 

parameter is often used to assess surface topography. This is undoubtedly a mistake, 

especially that the choice of the parameter used is usually determined by the ease  

of parameter interpretation or the worker’s habits.  

Therefore, one of the key issues in technical products quality assessment is  

the selection of an appropriate complementary set of parameters, ensuring the ease  

of interpretation of assessments for specific applications and surfaces, and the ability to 

effectively distinguish significantly different surfaces, which is referred to as  

the classification ability of the parameter. The problem of parameter set selection with high 

classification ability, easy to read and useful for selection of parameters and conditions  

of processing is schematically shown in Fig. 1. 

 

Fig. 1. Chart for methodology of the selection of parameter set with high classification ability [8] 



100 R. Rozanski/Journal of Machine Engineering, 2018, Vol. 18, No. 3, 98–106 

 

2. PARAMETER CLASSIFICATION ABILITY 

The classification issues are widely discussed in the literature, particularly in  

the technical and economic fields. Both general statistical tools, such as estimation, 

hypothesis verification and discriminant analysis [10], through methods directly related to 

technical object classification, to methods directly related to the quality analysis of technical 

products, including the method of classification ability of parameters evaluating topography 

characteristics of surfaces after processing, [1, 8, 10-14]. 

Many types of parameters based on the results of measurements of certain surface 

features are used to assess product surface quality. The parameters proposed in the literature 

do not allow for an unambiguous comparison of different types of surfaces. Moreover, 

many examples of completely different surfaces can be indicated, which are 

indistinguishable by commonly used parameters [2]. Therefore, the question arises about  

the choice of such parameters or their groups that will allow for the best classification  

of technical objects. 

Applying the same parameters to assess surfaces with different topographical 

structures may lead to erroneous inference about the real state of the surface. This is 

especially noticeable for surfaces with low roughness parameters, where e.g. surface 

waviness, motif characteristics or other, play an increasingly important role in the surface 

assessment. The technological significance of individual parameters depends on the degree 

of correlation of their values and parameters describing the process of shaping the surface  

to be machined and the parameters describing the features of the tools and other processing 

features.  

In order to enable the comparison of different parameters it is favorable to normalize 

these parameters. Certainly, this process has an effect on the distribution of each individual 

parameter, resulting in a loss of certain information on relationship between the dispersion 

measure and the position measure, which contribute a significant information on  

the classification ability of a parameter. In general, normalization can be performed using 

the following formula: 

𝑃𝑗𝑖 𝑁 =  
𝑃𝑗𝑖

− 𝑃𝑗 min

𝑃𝑗 max

, 

where 𝑃𝑗𝑖
 is 𝑖-this value of parameter 𝑃𝑗 , 𝑃𝑗𝑖 𝑁 the same value after normalization, whereas 

𝑃𝑗 min and 𝑃𝑗 max are the respective lowest and highest values of the parameter 𝑃𝑗 . After the 

normalization of the values of parameter 𝑃𝑗 are without units and belong to the interval 

〈0,1〉.  
The classification ability of the parameter 𝑃𝑗 increases as the distribution of probability 

of its value approaches uniform distribution. Thus, an ideal situation can be assumed, in 

which differences between the successive values of the parameter 𝑃𝑗 for individual surfaces 

are equal, i.e. for each 𝑖 = 0,1, … , 𝑛 + 1 we have ∆𝑃𝑗𝑖𝑁 =  𝑃𝑗𝑖+1𝑁 −  𝑃𝑗𝑖𝑁 =
1

𝑛+1
, where n is  

the number of studied surfaces and 𝑃𝑗𝑛+1𝑁
= 1.  
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The question arises how to compare the classification ability of individual parameters. 

Since the sum of all value differences for the normalized parameter 𝑃𝑗 is equal to 1, it is not 

possible to compare parameters according to the Loewner order [15]. However, it is possible 

to compare them using one-dimensional measures. Assuming that the measure  

of parameter classification capability is the degree of equalization of differences between 

successive values of the parameter, it seems appropriate to recognize the variance  

of differences ∆𝑃𝑗𝑖𝑁   (denotes 𝑉𝑎𝑟(∆𝑃𝑗𝑖𝑁)) as a natural index allowing comparison  

of standardized parameters classification ability. If the values of differences are to be 

compensated, the variance will tend to zero. 

The use of variance is, however, unfavorable due to the fact that it is the average value 

of square deviations, which entails all the disadvantages of the arithmetic mean. Another 

possible measure of classification ability is the geometric mean of the differences 

𝑆𝑔(∆𝑃𝑗𝑖𝑁). In a situation where the differences of values are aligned, the geometric mean 

tends to the arithmetic mean, in this case 
1

𝑛+1
. From a mathematical point of view,  

the geometric mean appears to be a better index of value alignment. A certain drawback  

of the geometric mean is the fact that it is equal to 0, when one of the factors is equal to 0, 

regardless of the variability of the other values. A possible way out of the situation is to add 

a very small value to each ԑ. The value of ԑ should be taken so low that it does not 

significantly affect the geometric mean value (e.g. ԑ = 
1

1000𝑛
). More on this subject can be 

read in [9], and the selection of ԑ values was examined in detail in the paper [16]. 

The evaluation of classification ability of individual parameters can be carried out 

using the following methodology: 

1. Selection of surface model set characteristic for a given processing type.  

2. Determination of values of the considered parameters for all surfaces included in the test.  

3. Normalization of parameter values to the interval 〈0,1〉.  
4. Visualization of the normalized parameter values e.g. in a radar graph.  

5. Sorting out values for each of the normalized parameters 𝑃𝑗𝑁 and determination  

of differences for the following values of individual parameters ∆𝑃𝑗𝑖𝑁 =  𝑃𝑗𝑖+1𝑁
−  𝑃𝑗𝑖𝑁. 

6. Determination of 𝜀 ≪  ∆𝑃𝑗𝑖𝑁 value for each 𝑖 and correction of every ∆𝑃𝑗𝑖𝑁 = 0. 

7. Determination of geometric mean 𝑊𝑠𝑘klas𝑗
= (∏ (∆𝑃𝑗𝑖𝑁 + 𝜀)𝑛

𝑖=1 )
1

𝑛, for all ∆𝑃𝑗𝑖𝑁 for  

each 𝑃𝑗. 

8. Value 0 < 𝑊𝑠𝑘klas <
1

𝑛+1
 is the index for classification ability of the parameter 𝑃𝑗. 

Classification ability increases with the value 𝑊𝑠𝑘klas.  

In further considerations we will assume that all 𝑃𝑗 parameters are normalized. 

3. COMPARISON OF GEOMETRIC MEAN AND VARIANCE AS INDICES  

OF PARAMETER CLASSIFICATION ABILITY EVALUATION 

The aim of the study was to examine the variability of variance and the geometric 

mean ∆𝑃𝑗𝑖
 for various 3D parameters assessing the roughness of the surface created in 
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various machining processes. In addition, the study examined the existence of a relationship 

between both indices of classification ability and a model of this relationship was 

determined. The obtained results were also compared with the analogous ones obtained for 

theoretical data generated for 8 types of distributions of parameter value differences [10]. 

Data containing values of 83 parameters for 22 surfaces were used for the analysis.  

All the surfaces considered, although were formed in various machining processes and 

differ significantly in the stereometric features of the surface, have approximately the same 

value of the St parameter. The 22 surfaces included 7 surfaces after abrasive machining,  

7 after erosion treatment, 3 abrasive smoothed surfaces, 2 with high porosity, 2 after 

exploitation wear and 1 with regular topography [8]. The values of 83 3D parameters 

characterizing the stereometric features of the surface were determined for the described 

surfaces (Table 1). 

Table 1. List of used 3D parameters [8] 

Symbol of the 

parameter 

Unit Context Description 

 

A1 μm2/mm  relative area of summits 

A2 μm2/mm  relative area of valleys  

Dw  μm  h = 0.2 St  average length of summits  

Dw/Sw μm/μm h = 0.2 St  the ratio of the average length of the summits to the 

average width of the summits  

Lw  h = 0.2 St number of summits  

Lwjd 1/mm h = 0.2 St number of summits per mm of the length  

Lwjp 1/mm2 h = 0.2 St number of summits per mm2 area  

Ow μm h = 0.2 St average distance between the summits  

Pw μm2 h = 0.2 St average area of summits 

S5p μm slash = 5% height of 5 surface summits   

S5v μm slash = 5% height of 5 surface valleys   

S10z μm slash = 5% height of 10 surface points  

Sa μm  arithmetic mean deviation of the surface 

Sal μm  fastest decay autocorrelation length 

Sbi   bearing index 

Sci   core fluid retention index 

Sda μm2  slash = 5% surface area of closed valleys  

Sdc μm p = 10%,  

q =80% 

surface section height difference 

Sdq     root-mean-square slope of the surface 

Sdr  %  developed interfacial area ratio 

Sds 1/μm2  density of summits of the surface 

Sdv μm3 slash = 5% volume of closed valleys 

Sfd   fractal dimension of the surface 

Sha μm2 slash = 5% surface area of closed summits 

Shv μm3 slash = 5% volume of closed summits 

Sk μm Gaussian filtering, 0.8 mm kernel roughness depth (roughness depth of the core) 

Sku   kurtosis of the height distribution 

Smc μm p = 10% inverse field surface material ratio  

Smmr μm3  mean material volume ratio 

Smq 

 

 

 

Gaussian filtering, 0.8 mm relative material content on plateau and depressions 

transition  

 Smr % c = 1 μm under the highest 

peak 

bearing area ratio at a given depth 
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Smvr μm  mean void volume ratio 

Sp μm  maximum height of summits 

Spc 1/μm slash = 5% area peak count 

Spd 1/μm2 slash = 5% density of summits of the surface 

Spk 

 

μm 

 

Gaussian filtering, 0.8 mm reduced peak height (roughness depth of the peaks) 

Spq 

 

 

 

Gaussian filtering, 0.8 mm slope of the regression line in plateau area 

Sq μm  root-mean-square (RMS) deviation of the surface 

sqrt(Pw) 

/Ow 

μm/μm 

 

h = 0.2 St 

 

ratio of the element of mean summits area to the mean 

distance between summits  

Sr1 

 

% 

 

Gaussian filtering, 0.8 mm upper material ratio 

Sr2 

 

% 

 

Gaussian filtering, 0.8 mm lower material ratio 

Ssc 1/μm  arithmetic mean summit curvature of the surface 

Ssk   skewness of the height distribution 

St μm  total height of the surface 

Std °  surface texture direction 

Str   texture aspect ratio of the surface 

Sv μm  maximum depth of valleys 

Svi   valley fluid retention index 

Svk 

 

μm 

 

Gaussian filtering, 0.8 mm reduced valley depth (roughness depth of the valleys) 

Svq 

 

 

 

Gaussian filtering, 0.8 mm slope of the regression line in valleys area 

Sw μm h = 0.2 St average width of summits 

Sxp 

 

μm 

 

p = 50%,  

q = 97.5% 

extreme height of the summit   

Sz μm  ten Point Height of the surface 

Vm μm3/μm2 p = 10% material volume at a given depth 

Vmc 

 

μm3/μm2 p = 10%, 

q = 80% 

material volume of the core 

Vmp μm3/μm2 p = 10% material volume of peaks 

 Vv  μm3/μm2 p = 10% void volume at a given depth 

Vvc 

 

μm3/μm2 

 

p = 10%, 

q = 80% 

void volume of the core 

Vvv  μm3/μm2 p = 80% void volume of valleys 

σ(sqrt(SPw) 

/ sqrt(Pw) 

 h = 0.2 St 

 

ratio of the standard deviation of the square roots of the 

summit areas to the square root of the mean summits 

area 

An analysis of the variability and relationship of the geometric mean and the variance 

of parameter value increments for the theoretical data from 8 types of distribution  

of normalized parameter increments is presented in the paper [10]. The results obtained then 

are shown in Fig. 2. On the basis of Fig. 2, it can be concluded that there is a strong linear 

inversely proportional relationship between Var(∆𝑃𝑗𝑖
) and Sg(∆𝑃𝑗𝑖

).  

Analogous analysis of the real values of 83 parameters investigating the stereometric 

features of the 22 surfaces gave similar results. The relationship between the variance and 

the geometric mean of the increments of individual parameters for the analyzed data is 

presented in Fig. 3.  
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Fig. 2. Dependency of Var (∆𝑃𝑗𝑖
) on Sg(∆𝑃𝑗𝑖

) for 8 types of distribution 

 

Fig. 3. Dependency of of Var (∆𝑃𝑗𝑖
) on Sg(∆𝑃𝑗𝑖

) for values of 83 parameters  

and the exponential model curve with respect to data 

Figure 3 shows that there is a strong exponential relationship between the geometric 

mean of the increments of the parameter values and their variance. The model of this 

relationship determined by the method of least squares takes the form of  

𝑉𝑎𝑟(∆𝑃𝑖𝑗) = 0,0053 + 0,0254 𝑒𝑥𝑝 (−282,0836 𝑆𝑔(∆𝑃𝑖𝑗)). 

The model determination coefficient is approximately 𝑅2 =0.6563. Thus, in about 

66% the above model explains variability of 𝑉𝑎𝑟(∆𝑃𝑖𝑗) treated as a function of 𝑆𝑔(∆𝑃𝑖𝑗). 

The curve of the model with respect to the values obtained is presented also in Fig. 3. 

It can be concluded from the analysis of the correlation between the considered 

classification ability indices, that there is a negative relationship between them. Thus, for 

observations for which the geometric mean values are lower, the variance values are higher. 

On the other hand, for smaller Sg(∆𝑃𝑗𝑖
) values it is possible to obtain higher values  
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of Var(∆𝑃𝑗𝑖
). Other ranges of both indices were obtained for real data. Especially the range 

of variance is significantly different. This results from the sensitivity of the indices under 

consideration, and in particular the variance, to the number of low values of parameter value 

increases [17].  

Strongly asymmetrical distributions predominated for real data, in which  

the number of low increments was significantly higher than in the theoretical data. When 

comparing the change in classification indices ratios in both analyzes, the geometric mean 

can be considered as a better indicator. This is due to its higher resistance to the number  

of small increments. This confirmed by the conclusions obtained in [10], where  

the geometric mean was rated as a better indicator of classification ability. 

 

Fig. 4. The exponential model in relation to the data expanded by 21 zero points 

As mentioned previously, the parameter classification ability would be ideal if its 

values were evenly distributed. In a situation where all increments of parameters would be 

equal, the geometric mean would be equal to the arithmetic mean, and the variance would 

be 0. In order to correct the obtained model of the relationship between the geometric mean 

and the variance of parameter increments so that the point with 𝑆𝑔(∆𝑃𝑗𝑖
) =

1

21
 and 

𝑉𝑎𝑟(∆𝑃𝑗𝑖
) = 0 coordinates would be taken into account, an additional point with such 

coordinates was introduced with the weight 21 was introduced for further analysis.  

This aimed to force a significant approximation of the determined regression curve to this 

point. The result of this treatment, together with a graph of the exponential model obtained 

by the least squares method, is presented in Fig. 4. 

After correction, the model of the relationship between the geometric mean of the 

increments of the parameter values and their variance determined by the least squares 

method takes the form of  

𝑉𝑎𝑟(∆𝑃𝑖𝑗) = 0,0003 + 0,0283 𝑒𝑥𝑝 (−139,6117 𝑆𝑔(∆𝑃𝑖𝑗)). 

The model determination coefficient is approximately 𝑅2 =0.8025. Thus, in more than 

80% the above model explains variability of 𝑉𝑎𝑟(∆𝑃𝑖𝑗) treated as a function of 𝑆𝑔(∆𝑃𝑖𝑗). 
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4. CONCLUSIONS 

In summary, it can be concluded that Var(∆𝑃𝑗𝑖
) and Sg(∆𝑃𝑗𝑖

) can be used to assess  

the classification ability of parameters. This confirms the existence of a strong statistical 

relationship between these indices. However, on the basis of both theoretical analysis  

of the differences presented in [10], and also on the basis of the analysis carried out for real 

values of 3D parameters evaluating stereometric features for the considered surfaces, it can 

be concluded that the geometric mean is a better index of the classification ability  

of technical parameters. This is due to the smaller influence of outstanding values on 

Sg(∆𝑃𝑗𝑖
) than on Var(∆𝑃𝑗𝑖

). This applies in particular to the strong influence of the number 

of small increments of parameter values on Var(∆𝑃𝑗𝑖
). 
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