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UTILISATION OF IoT AND SENSING FOR MACHINE TOOLS 

Strong requirements for automation in the production processes using machine tools have been increasing due to 

lack of high-skilled machining engineers. Automation used to be utilised in mass production, but it is also 

necessary in medium- to low-volume production recently. Next requirements will be monitoring or sensing 

functions to make the following possible: prompt service when the machine stops; detection of abnormality 

before the machine breaks down; and compensation of thermal displacement to ensure machining accuracy. 

These now need to be performed automatically in place of operators so that abnormality can be detected during 

machining operation. In this paper core technologies to support automation system will be discussed which are 

operation monitoring, predictive maintenance, sensing interface and thermal displacement compensation as  

a sensing application.  

1. INTRODUCTION 

The external environment of the machine tool business has reached a transitional 

point. With keywords such as the shift to EV (Electric Vehicle), aging population, IoT 

(semiconductor) and AM (Additive Manufacturing), the technological development trend is 

shifting from machining of mass-production parts, as represented by automobiles, to 

consolidation of parts, complex-shaped dies and molds, and new materials and techniques. 

Due to a worldwide shortage of machining engineers and an increasing demand for 

automation to stay cost competitive in developed countries with high labor costs, machine 

tool manufactures are now faced with one of the most challenging issues, the development 

of automation systems which include 5-axis control machines, mill-turn centres, and AM 

machines; and IoT and sensing technologies supporting those systems. Automation used to 

be utilised in mass production, but it is also necessary in medium- to low-volume 

production recently [1].  
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The development of key components of a machine tool, which are the spindle and  

the feeding axes, has achieved quite a high level of technological sophistication. While  

the continued advancement is needed, more focus now needs to be placed on automation  

of workpiece loading/unloading to tackle the shortage of machining operators, and 

automation of machine operation which was conventionally done by operators, such as 

measurement of workpiece accuracy and compensation, monitoring of machining 

abnormality, and tool changes. High reliability is required of devices for collecting chips 

and coolant to prevent machine stoppage caused by failure during long-hour, no-man 

operation. It is also required to predict failure in advance to prevent machine stoppage and 

to recover promptly in case of failure. 

In the meantime, innovative production technologies using IoT technologies, as 

represented by Industry 4.0 in Europe, have been rapidly developed and deployed in recent 

years. This paper reports the development of key technologies necessary for machine tools 

for automation, using IoT and sensing technologies. 

2. REMOTE MONITORING 

 Remote monitoring is the fundamental function of the machine tool IoT 

technology.Remote monitoring is now capable of analysing causes of machine stoppage, in 

addition to serving as the fundamental function such as remote monitoring of machine 

operation status, acquisition of the past statistical data including operation rates, and 

management of tool usage status. This can be achieved by monitoring the number of 

actuator operation times, operation hours and sensing information as well as machine 

operation status and alarm history at the same time. Research on predictive maintenance is 

also being conducted by storing information of multiple machines in the DB to analyse  

the data [2]. There is a prac-tical example which DMG MORI has offered operation 

monitoring/analysis systems since 2004 [3]. Today, approximately 7,000 machines are 

connected to this system. The system is capable of visualising the operation status by 

automatically collecting the operation status data of the machines. In other words,  

the system serves as a tool that helps operators to analyse the machine operation status and 

to find problems. Using this system, operators can identify and solve problems effectively, 

which makes it possible to prevent or minimise a machine stoppage. In the system,  

the machine operation status data are stored in the buffer of the HMI (PC) unit.  

The encrypted data are sent to the server of the machine- tool manufacturer by e-mail. Then, 

the data are stored by the machine, they are processed for statistics, and they are provided to 

the customers. In the conventional system, the available machine information was  

the operation status and the alarm history. Despite the limited information, some customers 

have increased machine operation rates by analysing the cause of the stoppage from  

the alarm and by eliminating the cause of the repeated alarm. In order to improve the system 

efficiency, the new system has certain additional monitoring items designed for lifetime 

simulation of parts and components of mass-production machines that inevitably operate for 

long hours and long periods. The monitoring of the operation status of the main actuators 
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has been added to the new system. Table 1 shows lists of the main actuator which are 

monitored by this system. Figure 1 shows a system structure for collecting machine 

operation data. In the structure, multiple machines are connected to a PC via Ethernet. 

MTconnect [4] is used as the interface between the machines and the PC to allow the system 

to flexibly accommodate the future addition of new machines from any manufacture. 

The information is stored in the server of the machine-tool manufacturer and is 

analysed for predictive maintenance. Figure 2 presents an example of the machine operation 

history of the main components for the purpose of estimating the lifecycle time. Figure 3 

shows a Pareto chart of the alarm history by frequency of occurrence. The bars show the 

number of alarms and the blue points indicate the accumulated probability of alarms, 

starting from the leftmost alarm. In this case the “Lift up/down” alarm, which is indicated in 

red, was generated when the duration of the upward or downward movement exceeded  

the specified time; hereafter, this will be referred to as the time-over alarm. 

Table 1. Actuators list for monitoring 

Monitoring Item Unit 

Cycle time 

ATC shutter open/close s 

Lifter up/down s 

A axis clump/unclamp s 

Transfer shutter open close s 

Fixture open/close s 

Accumulated 

Operation number 

ATC  

Table index 

Accumulated 

Operation time 
Spindle rotation min 

 

Fig. 1. System structure  
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Fig. 2. Operation history 

 

Fig. 3. Pareto chart by alarm frequency 

 

Fig. 4. Cycle time transition of lifter up/down 
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To investigate the cause of the movement delay, the time for the lifter up/down 

operation was analysed. Figure 4 shows the cycle time transition of the lifter up/down 

operation. The horizontal axis is the date and time and the vertical axis is the cycle time.  

In the analysis of the operation time of each actuator, signs of failure were detected, and  

the lifter up/down movement was found to have lasted 10% longer when the machine 

stopped its operation for a long time before coming to a complete stop. According to  

the operation result checked by the remote monitoring system, it was also demonstrated that 

the power was shut off during the set-up operation.  

The cause of this was estimated to be the following: when the temperature  

of the hydraulic oil – which is the power source of the lifter – is low, the time required for  

the lifter to perform the up/down movement is near the time-over alarm, thus indicating  

a narrow margin. This analysis proves that recording the cycle time of an actuator is useful 

for analysing intermittent problems for maintenance purposes. 

3. SENSING TECHNOLOGIES FOR MACHINE TOOL 

It is very important to improve service efficiency for machine tool manufactures 

because machine tools are used for very long term and need to dispatch service engineers at 

customer site. Many researches are being done to realize preventive maintenance and 

predictive maintenance to solve this issue [5, 6]. In order to estimate cutting condition and 

machine tool status like thermal displacement, cutting vibration, tool wear, power 

consumption and so on, internal and external sensors’ information are utilised. These 

functions are key to support autonomous machine tools to monitor machine tool on behalf 

of machine operator. Process monitoring was developed by using sensory machine tool 

integrating a sensing fixture and an adaptive sensory milling spindle [7]. A comprehensive 

survey of  machining monitoring, innovative signal processing, sensor fusion and related 

applications was reported by CIRP key note paper [8]. The sensing board was developed to 

monitor analogue sensors signal by the industrial computer for machine tools [9]. 

Acceleration sensors were installed in the spindle unit were used to measure chatter 

vibration, collision impact, and abnormal bearing vibration. Temperature sensors were 

installed in the spindle unit and table were used to compensate thermal displacement or 

diagnose spindle bearings. High speed sampling rate were required for acceleration sensors 

exceeds several kHz in order to monitor chatter vibration.  

The sensing network was structured with the 100BASE-TX Ethernet because sensors 

cannot be connected to the Ethernet directly, four types of interface boards for sensor signal 

inputs and Ethernet outputs were developed. The Data Acquisition FFT Board (DAQF) has 

three acceleration sensor interfaces and two temperature sensor interfaces. The Data 

Acquisition Temperature Board (DAQT) is a A/D converter board to monitor maximum 

eight temperature sensors. The Electrical Power Monitor Board (EPM) is connected to 

electrical current sensors and voltage sensors, which were placed at three-phase. Figure 5 

shows developed sensing interface board. Figure 6 shows sensing items on machining 

centre [10].  
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        (a) DAQF               (b) DAQT                   (c) DAQL                  (d) EPM 

Fig. 5. Sensor Interface Boards 

 

Fig. 6. Sensing items on machining centre 

4. THERMAL DISPLACEMENT COMPENSATION 

Thermal deformation is one of the biggest causes of accuracy deterioration. It is 

affected by Machine structure, Ambient temperature, State of heat sources and Coolant 

usage so that it is very difficult to estimate thermal displacement accurately. In recent years, 

due to lack of labour force in the manufacturing industry, automation systems have been 

required in order to reduce manual handling at the factory. For continuous operation, it is 

important to suppress the deterioration of accuracy due to thermal deformation because 

manual adjustment by measurement is difficult due to unmanned operation. Against this 

issue, various thermal displacement control technics by cooling and compensation have 

been developed [11, 12]. Although so many researches have been done, thermal 

displacement is still one of the most important issue in order to improve machining 

accuracy. Because it is very difficult to absorb to individual machine characteristic 

difference of individual machines or individual environment of customers’ factory or 

machining condition by conventional mathematical method. In order to make an accurate 
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thermal displacement prediction model, deep-learning was used. Deep-learning is  

a technique which has made remarkable achievements in various fields in recent years, 

particularly in the fields of image recognition and speech recognition. CNN (convolutional 

neural network) is applied to temperature data, it is feature extraction of temperature 

variation and information compression can be performed and features of temperature 

variation can be captured abstractly. A conceptual diagram of CNN used in deep-learning is 

shown in Fig. 7. It is a model that the temperature data from past fixed time period are given 

as input to predict the thermal displacement at that time. The performance of CNN was 

verified using actual temperature data. In order to determine the thermal sensor position, 

thermal sensitivity analysis was applied to a turning centre. The relationship between load 

pT generated by temperature variation Δt can be expressed as the temperature-load 

transformation matrix H: 

pT = HΔt (1) 

The temperature variation Δt and the displacement u is expressed by Equation 2: 

u = K
-1

HΔt = WΔt (2) 

The transfer function between the displacement and the temperature variation is 

obtained as Equation 3 from the stiffness matrix and the temperature-load transformation 

matrix [13–15]. Thermal sensitivity W can be described by inverse stiffness matrix and 

temperature-load transformation matrix as: 

W = K
-1

H (3) 

 

Fig. 7. Conceptual diagram of the CNN used 

The stiffness matrix K is normally calculated from the finite element model. Nastran 

was applied to calculate K. The temperature-load transformation matrix H was calculated 

based on Nastran's thermal load generation algorithm of solid element. Based on these, the 

thermal sensitivity W can be obtained. The overview of this method is shown in the Fig. 8. 
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Using the information of the 10 temperature sensors attached to the turning centre, 

models of “ridge regression”, “non-convolutional NN” and “CNN” were created and 

learning was carried out. The results of displacement error comparison are shown in  

the Fig. 9. The CNN error is 59.5% smaller in peak-to-peak than ridge regression and 71.6% 

smaller than non-convolutional NN. CNN has the best performance. 

 

Fig. 8. Calculation method for thermal sensitivity 

 

Fig. 9. Comparison between CNN and other methods 

 To realise more robust and accurate prediction model, we obtained large data for 

learning. Portable temperature variable booth was manufactured to change ambient 

temperature for the mass production turning centre at the assemble factory of DMGMORI. 

The temperature variation of each part of the machine structure and the thermal 

displacement was measured. The measurements were taken from multiple turning centres in 

the same model in a portable temperature variable booth and air conditioner as shown  

in Fig. 10.  
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Fig. 10. Portable temperature variable booth and air conditioner 

1
st
 step target was achieved by this algorism to realise 5 µm accuracy against ambient 

temperature change. We are utilising temperature data at the customer’s machine as a next 

step to reproduce actual customers’ environment at the DMGMORI factory. Remote 

monitoring function is used to obtain the temperature sensor data and measurement data 

(Fig. 11). 

 

Fig. 11. Remote monitoring of temperature sensor data at customer site 

5. CONCLUSION 

This paper presents utilisation of IoT and sensing technologies for machine tools. 

Operation monitoring and analysis are effective tools for analysing the cause of failure that 

hinders the improvement of operation rates. In order to estimate thermal displacement, 

cutting vibration, power consumption and so on, sensing interface board was developed. As 

a typical application, high performance thermal displacement compensation function was 

developed by sensing technology and CNN method. 

1. By adding the cycle time and operation number of actuators on the remote 

monitoring function, basic function of predictive maintenance was developed. 

2. To adopt CNN algorism for thermal temperature displacement, it is possible to 

absorb individual difference of individual machines or individual environment.  



M. Fujishima et al./Journal of Machine Engineering, 2019, Vol. 19, No. 1, 38-47 47 

 
REFERENCES  

[1]  JOVANE F., KOREN Y., BOER C.R., 2003, Present and Future of Flexible Automation: Towards 

NewParadigms, Annals of the CIRP, 52/2, 543–560.   

[2]  GAO R., WANG L., TETI R., DORNFELD D., KUMARA S., MORI M., & HELU M., 2015, Cloud-enabled 

prognosis for manufacturing, Annals of the CIRP, 64/2, 749–772. 

[3]  MORI M., FUJISHIMA M., KOMATSU M., ZHAO B., LIU Y., 2008, Development of Remote Monitoring and 

Maintenance System for Machine Tools, Annals of the CIRP, 57/1, 433–436.   

[4]  MT Connect Standard (n.d.). Retrieved October 3, 2017, from http://www.mtconnect.org/standard-documents/. 

[5]  LEE J., 2007, Machine performance monitoring and proactive maintenance in computer-integrated manufac-

turing: review and perspective, International Journal of Computer Integrated Manufacturing, 4/3. 

[6]  CUNHA P.F., CALDEIRA DUARTE J.A., ALTING L., 2004, Development of a productive service module based 

on a life cycle perspective of maintenance  issues, Annals of the CIRP, 53/1, 13–16. 

[7]  MÖHRING H.C., LITWINSKI K.M., GÜMMER O., 2010, Process monitoring with sensory machine tool 

components, Annals of the CIRP, 59/1, 383–386. 

[8]  TETI R., JEMIELNIAK K., O'DONNELL G., DORNFELD D., 2010, Advanced monitoring of machining 

operations, Annals of the CIRP, 59/2, 717–739. 

[9]  FUJISHIMA M., OHNO K., NISHIKAWA S., NISHIMURA K., SAKAMOTO M., KAWAI K., 2016, Study  

of sensing technologies for machine tools, CIRP Journal of Manufacturing Science and Technology, 14, 71–75. 

[10]  FUJISHIMA M., MORI M., NISHIMURA K., OHNO K., 2017. Study on quality improvement of machine tools. 

Procedia CIRP, 59, 156–159. 

[11]  MORI M., MIZUGUCHI H., FUJISHIMA M., IDO Y., MINGKAI N., KONISHI K., 2009, Design optimization 

and development of CNC lathe headstock to minimise thermal deformation, Annals of the CIRP, 58/1, 331–334. 

[12]  MAYR J., JEDRZEJEWSKI J., UHLMANN E., DONMEZ M.A., KNAPP W., HÄRTIG F., BRECHER C., 2012, 

Thermal issues in machine tools, Annals of the CIRP, 61/2, 771–791. 

[13] MAYR J., ESS M., PAVLIČEK F., WEIKERT S., SPESCHA D., KNAPP W., 2015, Simulation and measure- 

ment of environmental influences on machines in frequency domain, CIRP Annals-Manufacturing Technology, 

64/1, 479–482. 

[14] TAKEUCHI Y., OKUBO N., SATA T., 1976, On-line control of thermal deformation of machine tool Structure 

by measurement of temperature distribution, Journal of the Japan Society for Precision Engineering, 42/503, 

1043–1048, (in Japanese). 

[15] TAKEUCHI Y., SADA T., SATO M., SUZUKI H., 1980. Improvement of working accuracy of a numerically 

controlled machine tool by computer control compensation (2
nd

 Report): Error Compensation for the Ambient 

Temperature Change. Journal of the Japan Society for Precision Engineering, 46/12, 1532–1536, (in Japanese). 

 

http://www.mtconnect.org/standard-documents/

