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It is a well-known problem of milling machines, that waste heat from motors, friction effects on guides, 

environmental variations and the milling process itself greatly affect positioning accuracy and thus production 

quality. An economic and energy-efficient method of correcting this thermo-elastic positioning error is to gather 

sensor data (temperatures, axis positions, etc.) from the machine tool and the process and to use that information 

to predict and correct the resulting tool center point displacement using high dimensional characteristic diagrams. 

The computation of these characteristic diagrams leads to very large sparse linear systems of equations which 

require a vast memory and computation time to solve. This is particularly problematic for complex machines and 

varying production conditions which require characteristic diagrams with many input variables. To solve this issue, 

a new multigrid based method for the computation of characteristic diagrams will be presented, tested and 

compared to the previously used smoothed grid regression method. 

1. INTRODUCTION AND STATE OF THE ART 

THERMAL EFFECTS present one of the leading causes of positioning errors in 

machine tools [1]. They are caused by shifting temperature distributions inside the machine 

tool which lead to thermo-elastic deformations. These temperature fields are shaped by a large 

number of heat sources and heat sinks. Important ones are waste heat from the cutting process, 

friction from guides and bearings, power losses from motors, coolants and the environment. 

Other relevant factors which influence the time-dependent temperature distribution inside  

a machine tool are the heat transfer coefficients and the thermal capacity which influence the 

rate at which heat is transferred and stored. It is this multitude of influences which makes 

thermal issues so difficult to handle [2]. 

Generally, there are two main strategies of dealing with thermal errors in machine tools: 

correction and compensation strategies. Correction of thermo-elastic deformations involves 

the prediction or measurement of temperature or deformation fields and using them to offset 
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and thus correct the tool center point (TCP) position. Compensation on the other hand seeks 

to prevent or divert the influx of heat or to prevent or direct the deformation to reduce the 

TCP displacement [3]. These definitions follow the conventions within the German Research 

Foundation project CRC/TR96 on the thermo-energetic design of machine tools and may 

deviate from some literature sources.  

Sample correction strategies are the structure model based correction [4, 5], the indirect 

correction based on transfer functions [6, 7], the characteristic diagram based correction [8, 9] 

or the correction based on integrated deformation sensor (IDS) measurements [10]. 

Sample compensation strategies are active cooling [11], switchable heat storage through 

phase change materials (PCM) [12, 13], design optimization such as the thermo-symmetric 

design of machine tools [14] or the use of materials with negative thermal expansion [15]. 

This article focuses on the characteristic diagram based correction of thermo-elastic 

deformations. It uses sensor and control data as input variables to predict the TCP 

displacement. The underlying model for this prediction, i.e. the characteristic diagram is 

trained using measurement or simulation data. These contain datasets for the input variables 

along with their corresponding measured or simulated TCP displacements. Using this a priori 

trained model, fast control-internal correction algorithms can be used to calculate TCP offsets 

from the current sensor readings in real-time in order to improve a machine tool’s positioning 

accuracy [16]. Characteristic diagram based correction is a special type of regression analysis 

and thus a black-box method requiring little to no knowledge of the machine tool or the heat 

transfer mechanisms therein. A similar method using multiple variables in a different multiple 

regression model can be found in [17].  

There are several factors determining the quality of a characteristic diagram such as:  

– the number and type of input variables [18], 

– the type, fineness and structure of the characteristic diagram grid [19], 

– the method of interpolation and extrapolation on the grid, 

– the quantity and quality of the training data. 

It is this third point, the interpolation and extrapolation, which will be the main focus  

of this paper. A generalized explanation of the computation and use of characteristic diagrams 

was published in [7, 20] under the synonym “Smoothed Grid Regression” (SGR). It explains 

that both interpolation and extrapolation are achieved through local kernel functions. There 

are a great number of possible kernel functions like polynomials, wavelets, radial basis 

functions, etc.. One of the simplest and most common functions is the piecewise multilinear 

kernel. The kernels are parametrized using a set of data and smoothing equations. This step, 

called characteristic diagram computation, involves the assembly and solution of a large, 

sparse linear system of equations. It is mainly this step which has limited the size and 

complexity of characteristic diagrams thus far. 

The problem, sometimes called “curse of dimensionality”, is that the grid size grows 

exponentially with the number of input dimensions and polynomial with the fineness of the 

grid. This results in extremely large linear systems which require vast amounts of working 

memory and computation time. Additionally, the use of a larger and finer grid with a limited 

amount of training data means that the characteristic diagram will be largely shaped by the 

smoothing conditions. This results in two major challenges: 

– solving the very large linear systems in an efficient manner, 
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– making sure the smoothing conditions affect the solution (i.e. the characteristic 

diagram) in the desired way with respect to interpolation and extrapolation. 

The first challenge is an old one, which has consequently many possible solutions 

available within the state of the art. Large linear systems (e.g. A·x = b) have a high-

dimensional coefficient matrix (A). These matrices are often so large that they can no longer 

be stored fully within the working memory. Since they are also most often sparse, i.e. contains 

mostly 0.0 entries, they can be compressed into sparse matrix formats, which store only the 

non-zero entries, see [21]. While significantly reducing the necessary memory demand they 

also complicate the matrix arithmetic. Matrix by vector multiplication usually remains easy 

but, e.g., matrix element assignments or retrieval become far more difficult.  

By far the larger problem, however, is solving the linear system of equations. Using 

standard direct solvers such as the Gauß-Jordan-Algorithm requires O(n³) floating point 

operations (FLOPs), where n is the dimension of the matrix A. Since the coefficient matrix A 

is symmetric positive definite for characteristic diagrams, the Cholesky-Factorization may 

also be used, but it is still only slightly faster. Modern direct solvers for sparse matrices 

employ graph theory to efficiently traverse large sparsity patterns. An overview of such 

methods can be found in [21]. Beside large computation times, the matrix fill-in presents the 

largest issue. That means that solving the linear system directly inevitably fills many of the 

previously empty entries in the sparse coefficient matrix, which quickly fills up the working 

memory.  

An alternative, therefore, present the numerical or iterative solvers. Since they only 

update the solution vector during every iteration and do not modify the coefficient matrix, the 

memory demand does not grow during the solution process. This is typically done using 

Krylov subspace methods such as the Conjugate Gradients (CG) method, GMRES or 

BiCGSTAB [22].  

They improve the accuracy in every iteration so that the efficiency of these algorithms 

is measured in the number of cycles they need to reach a predetermined residual error 

threshold. This efficiency is, however, not only dependent on the matrix dimension but also 

on its properties, particularly its eigenvalues and eigenvectors. To improve these properties 

and speed-up the computation, preconditioners are often used. They modify the coefficient 

matrix or perform additional operations on the iterate in every cycle. Of particular interest in 

the context of characteristic diagrams are grid based preconditioners and solvers such as 

multigrid algorithms [23], multigrid preconditioned CG algorithms and BPX-preconditioned 

CG algorithms [24]. This idea will be discussed in greater detail in Chapter 3. An additional 

benefit in most iterative solvers is that (depending on the application) they can often be used 

without the need to ever fully assemble the coefficient matrix A. While this will be less 

efficient to compute and more difficult to implement, it eliminates the limitations on the 

matrix dimension almost completely and thus makes memory size nearly irrelevant  

(at least in terms of memory).  

Smoothness of the solution or the characteristic diagram is an important requirement in 

most applications. This obviously requires the solution to be continuous. Depending on the 

application, the concept of smoothness can have different meanings, such as: 

– the derivative must be continuous AND/OR, 

– the second derivative must not exceed a certain threshold AND/OR, 
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– the derivative must jump as little as possible AND/OR, 

– the derivative must not exceed a certain threshold, etc.. 

In the most commonly used type of characteristic diagram with multilinear kernel 

functions, the first two become irrelevant but the latter two are usually important for the 

acceptance of the solution in real-world applications. In thermal error prediction, e.g., it is 

usually expected that for any thermal state of the machine tool (as represented by the 

characteristic diagram), small temperature changes will cause a nearly linear expansion and 

thus a more or less linear change in the output variable. Good temperature sensors have  

a resolution of about 0.1 K.  

That means that all thermal inputs into a characteristic diagram can change by 0.1K 

instantly. When that happens, the resulting change in the predicted deformation should 

likewise be small, no matter which thermal state (i.e. section of the characteristic diagram) 

the machine tool is currently in. 

When the training data is sparse compared to the number of grid elements the smoothing 

requirements will not only ensure that the solution is smooth and the linear system has full 

rank, they also determine the way the solution behaves in unpopulated grid sections and 

particularly near the grid boundary. Depending on the application one may, e.g., wish for the 

characteristic diagram to converge toward a constant, toward a straight line perhaps even 

toward some higher-degree polynomial. How to control smoothness and achieve the desired 

extrapolation behaviour in characteristic diagrams will be explained in later Chapters. 

To summarize: the quality of characteristic diagram based correction depends on the 

type of kernel function used for interpolation and extrapolation on the grid, combined with 

the method of smoothing. Both determine the linear system of equations which needs to be 

solved in order to obtain the characteristic diagram. While small linear systems can still be 

solved with direct methods, larger linear systems require efficient (preconditioned) iterative 

solvers. 

Computing smooth characteristic diagrams through an FEM based approach with 

multigrid solvers was first suggested in [7] in 2012. In 2015 the grid fineness independent 

convergence was demonstrated and a study of different iterative solvers showed the multigrid 

preconditioned CG method to be the most efficient solver [8]. While this has already 

demonstrated the validity of the new approach, it has only done so for the most basic type of 

smoothing, the one that converges toward a constant. This article will use a simple example 

to show why this will often be problematic and how to modify the methods to obtain linear 

smoothing. To that end, Chapter 2 gives a brief overview on characteristic diagram based 

correction. Chapter 3 explains the new FEM based approach with multigrid solvers. Chapter 

4 then uses a simple 2D example to demonstrate the deficiencies of this method. Chapter 5 

shows a way to achieve polynomial extrapolation using Bogner-Fox-Schmidt-Elements, 

polynomial basis functions and higher-order smoothing terms. Since this variant is 

cumbersome for higher dimensions and can be hard to control over larger grids, another 

variation is suggested in Chapter 6. It uses a two-step approach to combine the smoothed grid 

regression with linear extrapolation on a coarse grid with the new FEM based approach on 

the fine grid. Chapter 7 tests the new method on machine tool thermal deformation 

measurement data. Finally, a summary will be given and an outlook on future research 

provided. 
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2. CHARACTERISTIC DIAGRAM BASED TCP CORRECTION 

Characteristic diagrams are a fundamental tool of engineers used to approximate real-

valued functions that depend on one or more input variables. The characteristic diagrams used 

in this paper are based on the smoothed grid regression introduced by Priber in 2003 [20] and 

later improved to enable efficient, high-dimensional characteristic diagrams able to 

approximate thermo-elastic deformations in machine tools [8]. These characteristic diagrams 

comprise a rectangular grid of support points and a set of kernel functions used to interpolate 

between them. Popular kernels are polynomials or splines, where higher-dimensional kernels 

are usually created by multiplying one-dimensional kernels (see [20]). 

The creation of a characteristic diagram starts with the selection of input variables 

needed to approximate the output variable. This can, e.g. be a set of temperature variables 

𝑡 = (𝑡1, 𝑡2, … , 𝑡𝑛), 

where each 𝑡𝑖 corresponds with a temperature sensor on the machine tool. The next step is to 

define and discretize the domain of each variable. The fineness of the discretization usually 

depends on the variability of the directional derivative and the type of kernel used: 

𝑇1 = 𝑡1,min: 𝑑𝑡1: 𝑡1,max  ;  … ;   𝑇𝑛 = 𝑡𝑛,min: 𝑑𝑡𝑛: 𝑡𝑛,max. 

In this example of an n-dimensional equidistant discretization, each grid axis vector Ti 

contains the support points of the i-th temperature variable which range from ti,min to ti,max with 

a constant spacing of dti. The type of kernel is thus usually chosen along with the grid fineness 

in order to obtain optimal grids and avoid overfitting. Given a sufficiently fine grid, simple 

piecewise multilinear kernels are sufficiently accurate and generally well suited for the 

approximation of thermal deformations [8]. A simple linear one-dimensional kernel function 

𝐾 at temperature 𝑡 is: 

𝐾𝑗(𝑡) =

{
 
 

 
 

𝑡1,𝑗+1−𝑡

𝑡1,𝑗+1−𝑡1,𝑗
  , 𝑡 ∈ [𝑡1,𝑗 , 𝑡1,𝑗+1]

𝑡−𝑡1,𝑗−1

𝑡1,𝑗−𝑡1,𝑗−1
  , 𝑡 ∈ [𝑡1,𝑗−1, 𝑡1,𝑗]

0         , 𝑒𝑙𝑠𝑒

 (1) 

While complex grid structures may sometimes be useful in minimizing the necessary degrees 

of freedom of a characteristic diagram, simple equidistant grids often perform equally well 

and are usually best at avoiding overfitting in thermal error estimation [19]. The next step is 

the gathering of training data which comprises a set of input data and their corresponding 

output data. These may be obtained from measurements or simulations and should cover as 

much of the input domain as possible. From this training data, data fitting equations are 

created in a least-squares error minimization approach. The thermal error in the z-direction 

𝑧(𝑡⃗⃗⃗⃗ ) for a set of temperatures 𝑡 on a grid with N nodes might then be: 

𝑧(𝑡) ≈ ∑  𝑟𝑖 ∙ 𝐾𝑖(𝑡) = : 𝜑(𝑡).𝑖=1..𝑁   (2) 

The thermal error is thus the weighted sum of all kernel functions evaluated at the grid 

location 𝑡. Most kernel functions will, however, not be in the immediate vicinity of  𝑡 and will 
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therefore be zero for any given data sample. Substituting measured or simulated temperatures 

and corresponding z deformations in equation (2) creates one data fitting equation per data 

sample. Since the data is most often sparse in comparison to the rather large grids, the 

assumption of smoothness is used to turn the underdetermined system into an overdetermined 

system by adding smoothing equations. A constant smoothing equation in 1D is: 

𝑟𝑖 − 𝑟𝑖−1 = 0.   (3) 

A linear smoothing equation in 1D is: 

    −𝑟𝑖−1 + 2 𝑟𝑖 − 𝑟𝑖+1 = 0.   (4) 

The resulting linear system then provides the coefficients r of the kernel functions for 

each grid vertex and thereby defines the characteristic diagram. Denoting the data fitting 

equations by 𝐷 and the smoothing equations by 𝑆 the resulting linear system is: 

[
𝐷
𝑆
] ∙ 𝑟 = [𝑧

0
].   (5) 

Multiplying the whole system by the transposed of the matrix DS gives a symmetric 

sparse linear system in the form 

𝐴 ∙ �⃗� = �⃗⃗�,  (6) 

where the solution �⃗� contains the weights of the kernel functions. A detailed account of the 

entire smoothed grid regression (SGR) algorithm can be found in [7] and [20]. Once the model 

has been trained, i.e. the optimal coefficient vector 𝑟 has been found, the deformations for 

any set of temperatures 𝑡 can be predicted using eq. (2). 

One possible application of characteristic diagram based interpolation is the estimation 

of thermal deformations from a small set of temperature sensors (strategically distributed 

across the machine tool) and the axis positions, which has been thoroughly investigated and 

tested in [7, 8, 16]. The axis positions are needed because the TCP error is usually position 

dependent. They can simply be added as additional input variables and treated the same as 

the temperature variables. Another application is the approximation of heat transfer 

coefficients for the accurate modelling of the heat dissipation through convection in thermal 

simulations of machine tools [25]. 

3. A NEW FEM BASED APPROACH WITH A MULTIGRID SOLVER 

Chapter 1 introduced multigrid methods as efficient iterative solvers for large sparse 

linear systems. Unfortunately, they cannot simply be applied to any linear system. In order to 

work, they require a linear system created from the discretization of a partial differential 

equation (PDE) on a set of at least two nested (bisected) grids. The part with the nested grids 

is easy to facilitate for characteristic diagrams. Starting from a very coarse grid, such as  

a single, large rectangle in 2D or a large hypercuboid in nD, one simply bisects this grid in 

every grid dimension until the desired grid fineness is reached. This creates L nested grids 

with increasing fineness. Naturally, one does not need to bisect every dimension the same 

number of times, though this would require some adaptations to the algorithm. 
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Obtaining the linear system from a PDE instead of the combination of data and 

smoothing equations as described in Chapter 2 requires an entirely new approach. The 

construction of such a PDE for the desired data regression will now be explained. In order to 

be able to build on the experience gained from the smoothed grid regression (SGR), the new 

approach should resemble the previous algorithm as closely as possible. The SGR 

simultaneously minimizes the data fitting error 𝜀𝐷 and the smoothing error 𝜀𝑆: 

𝜀𝐷(𝑟) = 𝑧 − 𝐷 ∙ 𝑟, 

𝜀𝑆(𝑟) = 0⃗⃗ − 𝑆 ∙ 𝑟. 

Finding an optimal solution (set of kernel function weights 𝑟) requires solving  

the following optimization problem: 

min
𝑟
  1
2
‖𝑧 − 𝐷 ∙ 𝑟‖2  +   1

2
 ‖𝑆 ∙ 𝑟‖2.  (7) 

Constant smoothing (see equation (3)) penalizes all non-zero gradients. Another way of 

doing this is by minimizing the integral over the gradients. Using this and equation (2), one 

can thus rewrite the optimization problem as: 

min
𝑟
  1
2
∑ 𝑤𝐷(𝑡𝑖) ∙ |𝑧𝑖 − 𝜑(𝑡𝑖)|

2𝑛Data
𝑖=1  +   1

2
 ∫ 𝑤𝑆(𝑡) ∙ |∇𝜑(𝑡)|

2


𝑑Ω,  (8) 

where  is the entire grid and 𝜑(𝑡) is the characteristic diagram approximation of the z 

displacement. 𝑤𝐷and 𝑤𝑆 are additional weights that can be used to assign different 

confidence values to data points or make local adjustments to the smoothness. In practice, 𝑤𝐷 

is almost always set to 1.0 and 𝑤𝑆 is set to a constant value. Finding a good smoothing 

constant 𝑤𝑆 depends on the range of the output variable (𝑧) and usually requires some trial 

and error. In the SGR, 𝑤𝑆 also depends on the grid fineness because it is applied to each grid 

vertex instead of the entire grid space . For thermal error prediction, where the output 

variable usually has a range of 10–200 µm, good smoothing constants can most often be found 

between 0.1 and 1.0. While setting individual smoothing weights to control the shape of  

a solution in any section of the grid may sound extremely useful, it is actually very difficult 

to manage in large, high-dimensional grids. This is mostly because characteristic diagrams 

with more than two input variables can no longer be easily plotted which makes it difficult to 

identify grid sections where weights may need adjusting. Also, since the data is usually very 

sparse, the “correct” shape of the characteristic diagram can only be guessed at. 

Using constant weights as suggested, the optimum is found by setting all directional 

derivatives of the target function in (8) equal to zero: 

∑ (𝑧𝑖 − 𝜑(𝑡𝑖)) ∙ 𝛿𝜑(𝑡𝑖)
𝑛Data
𝑖=1  +   ∫ 𝑤𝑆 ∙ ∇𝜑(𝑡) ∙


∇𝛿𝜑(𝑡) 𝑑Ω =   0,   ∀𝛿𝜑.   (9) 

Equation (9) is now already the weak formulation of a PDE. Since the finite element 

method (FEM) operates on an element-by-element basis, it would be nice to have the data 

fitting term also as an integral over the domain . This can be accomplished using the  

Dirac-Function: 

𝛿𝑡𝑖(𝑡):= {
∞,      𝑡 = 𝑡𝑖
0,        𝑒𝑙𝑠𝑒

,   with  ∫ 𝛿𝑡𝑖(𝑡)
∙ 𝜑(𝑡)𝑑Ω =  𝜑(𝑡𝑖) .   (10) 
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With this Dirac-Function, one can now rewrite equation (9) as: 

 ∑ ∫ (𝑧𝑖 − 𝜑(𝑡𝑖)) ∙ 𝛿𝜑(𝑡𝑖) ∙
𝑛Data
𝑖=1 𝛿𝑡𝑖(𝑡) 𝑑Ω + ∫ 𝑤𝑆 ∙ ∇𝜑(𝑡) ∙


∇𝛿𝜑(𝑡) 𝑑Ω = 0,   ∀𝛿𝜑.  (11) 

The FEM now divides the integral over   into the sum of the integrals over each grid 

element and replaces 𝜑(𝑡) and 𝛿𝜑(𝑡) by so-called test functions. As test functions, the same 

kernel functions as before (compare eq. (1)) were chosen. After computing (11) for every grid 

element, the coefficient matrix A and the right-hand-side b are assembled to form a linear 

system nearly identical to equation (6), which can now be solved more efficiently by multigrid 

methods. 

In [16], this new FEM based algorithm was successfully tested and has demonstrated 

that it enables characteristic diagrams with as many as ten or more input variables [8]. In 

another test of this new method, grid fineness independent convergence was demonstrated 

and a study of different iterative solvers showed the multigrid preconditioned CG method to 

be the most efficient solver [8]. The multigrid algorithm achieves this fast convergence 

behaviour by using a smoothed approximation of the residual (�⃗⃗� − 𝐴 ∙ �⃗�) from the coarser 

grids to improve the fine grid solution during every cycle of the CG algorithm. Different types 

of smoothing, such as linear smoothing (see eq. (4)), require different PDEs and often 

different test functions. One such example will be given in Chapter 5. 

4. A 2D TEST CASE FOR THE EVALUATION OF SMOOTHNESS AND 

EXTRAPOLATION BEHAVIOUR 

The previous chapters have argued that very large characteristic diagrams require 

iterative solvers due to limited working memory and have demonstrated how characteristic 

diagram computation can be modified to enable the usage of multigrid solvers. So far this has 

only been done for the simplest type of smoothing which converges toward a constant. This 

chapter will use a simple two-dimensional function to show the limitations of constant 

smoothing and the need for more complex smoothing strategies. The test function is:  

𝑧(𝑥, 𝑦) = 1

10
 (𝑥 − 5)2 + 1

2
 𝑥 + 1

2
 𝑦 + 1

8
 𝑒𝑥−6 − 2 , 𝑥 ∈ [0,10], 𝑦 ∈ [0,10]   (12) 

This function was designed specifically for the tests in this and the following chapters 

because it behaves differently in different grid sections and requires constant, linear and 

super-linear extrapolation in different sections of the border. Performing these tests with 

actual measurement or simulation data of the thermal error from some machine tool may have 

also been possible but a 2D example was desired for better visual evaluation and thermal error 

prediction with only two input variables will usually not work for realistic thermal load cases. 

Since the test is supposed to focus on smoothing and extrapolation, the training data was 

created randomly within the subdomain 𝑥 ∈ [1.5,8.5], 𝑦 ∈ [1.5,8.5]. 500 training data points 

were used and each output value received a random offset between –0.5 and +0.5 to represent 

stochastic measurement errors and thus increase the difficulty. The tested characteristic 

diagram variants will be judged by their (optically perceived) smoothness and whether or not 

they can reproduce the qualitatively correct extrapolation behaviour. 
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Fig. 1. The 2D test function z (x,y) 

Naturally they must also reproduce the function accurately within the training data 

subdomain. Quantitatively exact estimations of the values on the border are not expected due 

to the exponential term within eq. (12) and the negative effects of the random offsets. The 

first test will be the SGR method with linear smoothing. 

       

Fig. 2. SGR approximation of test function with linear smoothing conditions; left: surface plot, right: diagonal 

Figure 2 clearly shows linear extrapolation beyond the training data. As expected, it 

could not accurately reproduce the exponential growth towards the right border. Otherwise it 

presents a quite good representation and extrapolation of the training data. Some similar tests 

with significantly less data points have shown problems in the corners. In some of these cases 

the corners folded in the opposite direction of where the test function lies. This was an 

unfortunate combination of the random data offset and the smoothing requirements. Since the 

corners are furthest from all other data points in this example, the closest data point will have 

a very strong influence on the shape of the entire section. 

The second test is with constant smoothing using the FEM based approach, see eq. (11). 

Fig. 3 shows the expected constant extrapolation which is entirely unsuited to the test  

function (12).  
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Fig. 3. Approximation of test function with the new FEM based method 

It must also be noted that along the top right border the extrapolation lies below  

the outer most test data, see also Fig. 4. This is due to the global nature of characteristic 

diagrams and the constant smoothing conditions, i.e. since most of the data points are well 

below the few larger points in the top and right sections, the extrapolation there will be 

“dragged down” in order to minimize the overall smoothing error. 

 

Fig. 4. 3D view of top right corner of approximation of test function with the new FEM based method 

Consequently, particularly large values there will result in sharp spikes in the grid. Local 

manipulations of the smoothing weights might remove the spikes and improve extrapolation 

but it will never be linear or even super-linear. In thermal error prediction where linear thermal 

expansion is expected, the constant smoothing conditions will similarly fall short. 

This simple example demonstrates that linear extrapolation is essential for many data 

fitting problems. Since there is not yet an efficient way to compute such solutions on large 

grids, the following two chapters will present some new methods to enable linear 

extrapolation with multigrid solvers. 

5. HIGHER ORDER SMOOTHING WITH BOGNER-FOX-SCHMIDT ELEMENTS 

Higher order smoothing, particularly linear smoothing, requires a new PDE. Therefore, 

we will proceed similar to Chapter 3, starting with equation (7) which still holds true.  

The difference now, is that the smoothing matrix S looks different and therefore the second 

term in equation (8) must also be changed. 
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min
𝑟
 1
2
∑ 𝑤𝐷(𝑡𝑖) ∙ |𝑧𝑖 − 𝜑(𝑡𝑖)|

2𝑛Dat𝑎
𝑖=1 + 1

2
 ∫ 𝑤𝑆1(𝑡) ∙ |∇𝜑(𝑡)|

2


+ 𝑤𝑆2(𝑡) ∙ |∆𝜑(𝑡)|

2
𝑑Ω.  (13) 

This new target function now contains an additional smoothing term which minimizes 

the integral over the second derivative along with the data fitting and constant smoothing. In 

analogy to Chapter 3, the weak formulation of the PDE can be obtained by setting the 

directional derivatives to zero: 

∑ ∫ (𝑧𝑖 − 𝜑(𝑡𝑖)) ∙ 𝛿𝜑(𝑡𝑖) ∙
𝑛Data
𝑖=1 𝛿𝑡𝑖(𝑡) 𝑑Ω + ∫ 𝑤𝑆1 ∙ ∇𝜑(𝑡) ∙


∇𝛿𝜑(𝑡) 𝑑Ω +

                                              + ∫ 𝑤𝑆2 ∙ ∆𝜑(𝑡) ∙


∆𝛿𝜑(𝑡) 𝑑Ω = 0,   ∀𝛿𝜑.    (14) 

The problem now is that the simple linear kernel functions from before no longer work 

here because the test function has to be continuously differentiable. This dilemma can be 

resolved using Bogner-Fox-Schmidt (BFS) elements: 

 

 

Fig. 5. The Family of Bogner-Fox-Schmidt elements in 2D [26] 

In BFS elements the vertices not only hold the function values but also all directional 

derivatives and all mixed derivatives. In 2D that means four parameters per grid vertex instead 

of just one. The test functions typically used with BFS elements are from the function space 

𝑄3 of third degree mixed polynomials (e.g. 𝑄1,2𝐷 = span(1, 𝑥, 𝑦, 𝑥𝑦)). 
Before the new method is applied to the test function from chapter 4, some important 

properties should be pointed out. The ability of higher-degree extrapolation is obvious 

although strictly linear extrapolation may be difficult with 𝑄3 ansatz functions. The greatest 

weakness of this new method is the much greater number of parameters. Particularly with 

higher-dimensional grids, this not only increases the matrix size dramatically, it also worsens 

the ratio of data to degrees of freedom and it makes the implementation significantly more 

complicated. Mitigating these downsides, the new method also has two major advantages over 

the standard SGR, namely the fact that the solution can be computed without needing to 

assemble the coefficient matrix (using FEM and iterative solvers) and that the additional 

degrees of freedom allow the reproduction of more complex functions with coarser grids.  

Figure 6 shows the approximation of the test function with a single grid element. It 

already gives a quite good approximation of the actual function and clearly demonstrates both 

the smoothness and the desired extrapolation behaviour. 

Figure 7 shows the approximation with a much finer grid, where the method has clearly 

failed. Aside from the very large number of degrees of freedom, especially in less populated 

grid sections, the problem lies with the higher-degree polynomial ansatz functions. 
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Fig. 6. Approximation of test function with the new FEM based method and one BFS element 

A closer examination revealed, that they can form symmetrical wave shapes on the grid 

elements which still have minimal or even zero smoothing error according to equation (13). 

Local adjustments of the smoothing weights will likely have little effect on this. In order to 

best use the new method, one should therefore keep the grid so coarse that most or ideally all 

grid elements contain data points. This, of course, limits its usefulness. 

 

          

Fig. 7. Approximation of test function with new FEM based method and 25 BFS elements 

6. TWO-STEP COMBINATION OF SGR AND FEM BASED APPROACH 

Since the higher-order polynomials from Chapter 5 have not fully satisfied the need for 

a reliable linear smoothing and extrapolation method, another way must be found. For this,  

a short recapitulation of some important points from the previous chapters will now be given. 

The SGR method is well suited for data fitting problems and capable of linear extrapolation. 

This is, however, only possible up to a certain grid size, so that for a given number of input 

variables the achievable grid fineness is ultimately limited. The new FEM based approach 
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generally interpolates well and can handle almost any grid size. It is, however, not capable  

of linear extrapolation and can sometimes become spiky when the data density becomes  

too low.  

Examining this last property more closely for different grid configurations, one will find, 

that the spikes appear, when isolated data points near the outskirts of the grid have several 

more grid elements but no more data points between them and the border. In these cases, any 

gradient the characteristic diagram may have had up to that data point will be smoothed out 

and a spike will appear depending on the data and smoothing weights. Figure 4 illustrates this 

effect. On the other hand, so long as all grid elements, even if they contain no data points 

themselves, are surrounded by some data points in every direction, no matter how far away 

they may be, the interpolation works just fine. 

The new method combines the strengths of both the SGR and the FEM based approach 

by computing the characteristic diagram in two steps. The first step uses the SGR with linear 

smoothing (see eq. (4)–(6), [7]) on a grid that is coarse enough to still be computed with  

a direct solver. While for higher dimensions, this solution will likely not be sufficiently 

accurate, it still produces good extrapolations towards the grid boundaries. Therefore, this 

coarse characteristic diagram can be used to compute the function values along the borders 

for a much finer grid. These values are then appended to the training data. This extended set 

of training data can then be fitted with the FEM based approach on the finer grid (see eq. 

(11)). Because all grid elements are now surrounded by plenty of data points in all directions, 

the problems with smoothing and extrapolation are solved. Figure 8 shows the approximation 

of the test function with this new combination approach. 

        
Fig. 8. Approximation of test function with combined (SGR+FEM) method 

7. VALIDATION ON MACHINE TOOL MEASUREMENT DATA 

In order to show that the new combination approach from the previous chapter also 

works for higher dimensions (i.e. more input variables) and for thermo-elastic deformation 

prediction, a 5-axis milling machine was measured under varying dry-cutting conditions and 
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relatively constant ambient conditions over several hours. Figure 9 shows a comparison  

of the measured z displacement of the machine tool’s TCP with the estimations from both the 

old FE based method with constant smoothing (see eq. (11)) and the new combination 

approach. Since only a few randomly chosen data points were used for model training,  

the prediction models require both good interpolation and extrapolation capabilities. For this 

test, four temperature sensors were chosen. Figure 9 shows that the new combination not only 

works well in higher dimensions but it also outperforms the simple FE based method with 

constant smoothing. 

 

Fig. 9. Comparison of measured and estimated z displacement from a machine tool 

8. SUMMARY, CONCLUSION AND OUTLOOK 

Thermal effects in machine tools continue to be one of the major sources of positioning 

errors in machine tools. Different compensation and correction strategies can be used to 

mitigate these thermal errors. Characteristic diagram based correction presents  

a data-driven approach which maps a set of input variables directly onto the tool center point 

displacement. The achievable quality of this error estimation depends, among other factors, 

on the mechanism of interpolation and extrapolation. For characteristic diagrams this is 

determined mainly by the kernel functions and the smoothing conditions and weights used in 

the least-squares optimization. The original Smoothed Grid Regression (SGR) method for 

calculating characteristic diagrams can be used with constant and linear smoothing 

conditions, but has limitations in the grid size due to its use of direct linear system solvers.  

A new FEM based approach with iterative multigrid solvers which mimics the SGR with 

constant smoothing has been presented and has overcome the grid size limitations. A similar 

method for linear smoothing which is required for linear extrapolation and necessary in many 

real-world applications had, however, been missing. In an adaptation of the FEM based 

approach for constant smoothing, a new method has been constructed for polynomial 

extrapolation. It relies on Bogner-Fox-Schmidt elements and third degree polynomial ansatz 

functions. The new method has achieved polynomial extrapolation and decent approximations 

for coarse grids but is not well suited for fine grids. Another approach has used a combination 

of the SGR with linear smoothing on a coarse grid with a fine grid approximation using the 

FEM based algorithm. Therein the SGR computes the values on the boundaries, which are 

then added to the training data for the FEM based method. This method has shown good 
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interpolation and linear extrapolation similar to the results of the SGR with linear smoothing 

on the same fine grid. All tests were performed in 2D on an artificially constructed sample 

function. Despite this, the results are expected to transfer to most other functions and also to 

higher dimensional input spaces. To demonstrate the effectiveness of the new method on 

actual thermal deformation data, a machine tool was measured under varying thermal loads 

and the resulting z-deformation was estimated. In this test the new combination approach 

quite accurately estimated the thermal displacement and it outperformed the FE based 

approach with constant smoothing.  

In Chapter 1, the quantity and quality of the training data was mentioned as another 

important factor for achieving optimal approximation results. Future research will therefore 

be focused on how to best obtain good and enough training data from thermo-elastic 

simulations or measurements with the least effort. This is particularly relevant for the 

industrial application of characteristic diagram based correction because on the one hand 

every additional measurement or simulation costs money and on the other hand the machine 

tool manufacturers must be certain that their correction algorithms are prepared for all 

conceivable thermal deformation states of their machine tool. 
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